From dc376e367654f6fd904b6443717fe7ae9b1992a2 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Tue, 19 Jul 2022 13:58:41 -0700 Subject: [PATCH] Ensure all model entrypoint fn default to `pretrained=False` (a few didn't) --- timm/models/hrnet.py | 18 +++++++++--------- timm/models/resnet.py | 32 ++++++++++++++++---------------- 2 files changed, 25 insertions(+), 25 deletions(-) diff --git a/timm/models/hrnet.py b/timm/models/hrnet.py index 7e9b096f..30860120 100644 --- a/timm/models/hrnet.py +++ b/timm/models/hrnet.py @@ -814,45 +814,45 @@ def _create_hrnet(variant, pretrained, **model_kwargs): @register_model -def hrnet_w18_small(pretrained=True, **kwargs): +def hrnet_w18_small(pretrained=False, **kwargs): return _create_hrnet('hrnet_w18_small', pretrained, **kwargs) @register_model -def hrnet_w18_small_v2(pretrained=True, **kwargs): +def hrnet_w18_small_v2(pretrained=False, **kwargs): return _create_hrnet('hrnet_w18_small_v2', pretrained, **kwargs) @register_model -def hrnet_w18(pretrained=True, **kwargs): +def hrnet_w18(pretrained=False, **kwargs): return _create_hrnet('hrnet_w18', pretrained, **kwargs) @register_model -def hrnet_w30(pretrained=True, **kwargs): +def hrnet_w30(pretrained=False, **kwargs): return _create_hrnet('hrnet_w30', pretrained, **kwargs) @register_model -def hrnet_w32(pretrained=True, **kwargs): +def hrnet_w32(pretrained=False, **kwargs): return _create_hrnet('hrnet_w32', pretrained, **kwargs) @register_model -def hrnet_w40(pretrained=True, **kwargs): +def hrnet_w40(pretrained=False, **kwargs): return _create_hrnet('hrnet_w40', pretrained, **kwargs) @register_model -def hrnet_w44(pretrained=True, **kwargs): +def hrnet_w44(pretrained=False, **kwargs): return _create_hrnet('hrnet_w44', pretrained, **kwargs) @register_model -def hrnet_w48(pretrained=True, **kwargs): +def hrnet_w48(pretrained=False, **kwargs): return _create_hrnet('hrnet_w48', pretrained, **kwargs) @register_model -def hrnet_w64(pretrained=True, **kwargs): +def hrnet_w64(pretrained=False, **kwargs): return _create_hrnet('hrnet_w64', pretrained, **kwargs) diff --git a/timm/models/resnet.py b/timm/models/resnet.py index e5a6b791..0ee964b0 100644 --- a/timm/models/resnet.py +++ b/timm/models/resnet.py @@ -1003,7 +1003,7 @@ def tv_resnext50_32x4d(pretrained=False, **kwargs): @register_model -def ig_resnext101_32x8d(pretrained=True, **kwargs): +def ig_resnext101_32x8d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ @@ -1014,7 +1014,7 @@ def ig_resnext101_32x8d(pretrained=True, **kwargs): @register_model -def ig_resnext101_32x16d(pretrained=True, **kwargs): +def ig_resnext101_32x16d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ @@ -1025,7 +1025,7 @@ def ig_resnext101_32x16d(pretrained=True, **kwargs): @register_model -def ig_resnext101_32x32d(pretrained=True, **kwargs): +def ig_resnext101_32x32d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ @@ -1036,7 +1036,7 @@ def ig_resnext101_32x32d(pretrained=True, **kwargs): @register_model -def ig_resnext101_32x48d(pretrained=True, **kwargs): +def ig_resnext101_32x48d(pretrained=False, **kwargs): """Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" `_ @@ -1047,7 +1047,7 @@ def ig_resnext101_32x48d(pretrained=True, **kwargs): @register_model -def ssl_resnet18(pretrained=True, **kwargs): +def ssl_resnet18(pretrained=False, **kwargs): """Constructs a semi-supervised ResNet-18 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ @@ -1057,7 +1057,7 @@ def ssl_resnet18(pretrained=True, **kwargs): @register_model -def ssl_resnet50(pretrained=True, **kwargs): +def ssl_resnet50(pretrained=False, **kwargs): """Constructs a semi-supervised ResNet-50 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ @@ -1067,7 +1067,7 @@ def ssl_resnet50(pretrained=True, **kwargs): @register_model -def ssl_resnext50_32x4d(pretrained=True, **kwargs): +def ssl_resnext50_32x4d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-50 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ @@ -1077,7 +1077,7 @@ def ssl_resnext50_32x4d(pretrained=True, **kwargs): @register_model -def ssl_resnext101_32x4d(pretrained=True, **kwargs): +def ssl_resnext101_32x4d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-101 32x4 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ @@ -1087,7 +1087,7 @@ def ssl_resnext101_32x4d(pretrained=True, **kwargs): @register_model -def ssl_resnext101_32x8d(pretrained=True, **kwargs): +def ssl_resnext101_32x8d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-101 32x8 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ @@ -1097,7 +1097,7 @@ def ssl_resnext101_32x8d(pretrained=True, **kwargs): @register_model -def ssl_resnext101_32x16d(pretrained=True, **kwargs): +def ssl_resnext101_32x16d(pretrained=False, **kwargs): """Constructs a semi-supervised ResNeXt-101 32x16 model pre-trained on YFCC100M dataset and finetuned on ImageNet `"Billion-scale Semi-Supervised Learning for Image Classification" `_ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ @@ -1107,7 +1107,7 @@ def ssl_resnext101_32x16d(pretrained=True, **kwargs): @register_model -def swsl_resnet18(pretrained=True, **kwargs): +def swsl_resnet18(pretrained=False, **kwargs): """Constructs a semi-weakly supervised Resnet-18 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ @@ -1118,7 +1118,7 @@ def swsl_resnet18(pretrained=True, **kwargs): @register_model -def swsl_resnet50(pretrained=True, **kwargs): +def swsl_resnet50(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNet-50 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ @@ -1129,7 +1129,7 @@ def swsl_resnet50(pretrained=True, **kwargs): @register_model -def swsl_resnext50_32x4d(pretrained=True, **kwargs): +def swsl_resnext50_32x4d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-50 32x4 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ @@ -1140,7 +1140,7 @@ def swsl_resnext50_32x4d(pretrained=True, **kwargs): @register_model -def swsl_resnext101_32x4d(pretrained=True, **kwargs): +def swsl_resnext101_32x4d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-101 32x4 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ @@ -1151,7 +1151,7 @@ def swsl_resnext101_32x4d(pretrained=True, **kwargs): @register_model -def swsl_resnext101_32x8d(pretrained=True, **kwargs): +def swsl_resnext101_32x8d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-101 32x8 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_ @@ -1162,7 +1162,7 @@ def swsl_resnext101_32x8d(pretrained=True, **kwargs): @register_model -def swsl_resnext101_32x16d(pretrained=True, **kwargs): +def swsl_resnext101_32x16d(pretrained=False, **kwargs): """Constructs a semi-weakly supervised ResNeXt-101 32x16 model pre-trained on 1B weakly supervised image dataset and finetuned on ImageNet. `"Billion-scale Semi-Supervised Learning for Image Classification" `_