Move padding out of windowing code for hieradet, fix torchscript typing issues, make pooling MaxPool unique instances across two modules
parent
146c2fbe34
commit
e035381171
|
@ -9,7 +9,7 @@ from torch.jit import Final
|
|||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, PatchDropout, \
|
||||
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit
|
||||
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple
|
||||
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
|
@ -17,25 +17,7 @@ from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
|
|||
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
||||
|
||||
|
||||
def do_pool(
|
||||
x: torch.Tensor,
|
||||
pool: nn.Module,
|
||||
norm: nn.Module = None,
|
||||
) -> torch.Tensor:
|
||||
if pool is None:
|
||||
return x
|
||||
# (B, H, W, C) -> (B, C, H, W)
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = pool(x)
|
||||
# (B, C, H', W') -> (B, H', W', C)
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
if norm:
|
||||
x = norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def window_partition(x, window_size):
|
||||
def window_partition(x, window_size: Tuple[int, int]):
|
||||
"""
|
||||
Partition into non-overlapping windows with padding if needed.
|
||||
Args:
|
||||
|
@ -46,41 +28,35 @@ def window_partition(x, window_size):
|
|||
(Hp, Wp): padded height and width before partition
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||
Hp, Wp = H + pad_h, W + pad_w
|
||||
|
||||
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||
windows = (
|
||||
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
)
|
||||
return windows, (Hp, Wp)
|
||||
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
||||
return windows
|
||||
|
||||
|
||||
def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: List[int], hw: List[int]):
|
||||
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]):
|
||||
"""
|
||||
Window unpartition into original sequences and removing padding.
|
||||
Args:
|
||||
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||
window_size (int): window size.
|
||||
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||
hw (Tuple): original height and width (H, W) before padding.
|
||||
Returns:
|
||||
x: unpartitioned sequences with [B, H, W, C].
|
||||
"""
|
||||
Hp, Wp = pad_hw
|
||||
H, W = hw
|
||||
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||
x = windows.view(
|
||||
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
||||
)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
B = windows.shape[0] // (H * W // window_size[0] // window_size[1])
|
||||
x = windows.view(B, H // window_size[0], W // window_size[0], window_size[0], window_size[1], -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||||
return x
|
||||
|
||||
|
||||
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
|
||||
pad_h = (window_size[0] - H % window_size[0]) % window_size[0]
|
||||
pad_w = (window_size[1] - W % window_size[1]) % window_size[1]
|
||||
Hp, Wp = H + pad_h, W + pad_w
|
||||
return Hp, Wp, pad_h, pad_w
|
||||
|
||||
|
||||
class MultiScaleAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -112,8 +88,9 @@ class MultiScaleAttention(nn.Module):
|
|||
q, k, v = torch.unbind(qkv, 2)
|
||||
|
||||
# Q pooling (for downsample at stage changes)
|
||||
if self.q_pool:
|
||||
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
||||
if self.q_pool is not None:
|
||||
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool
|
||||
q = self.q_pool(q).permute(0, 2, 3, 1)
|
||||
H, W = q.shape[1:3] # downsampled shape
|
||||
q = q.reshape(B, H * W, self.num_heads, -1)
|
||||
|
||||
|
@ -138,7 +115,7 @@ class MultiScaleBlock(nn.Module):
|
|||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
drop_path: float = 0.0,
|
||||
q_stride: Tuple[int, int] = None,
|
||||
q_stride: Optional[Tuple[int, int]] = None,
|
||||
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
||||
act_layer: Union[nn.Module, str] = "GELU",
|
||||
window_size: int = 0,
|
||||
|
@ -146,24 +123,26 @@ class MultiScaleBlock(nn.Module):
|
|||
super().__init__()
|
||||
norm_layer = get_norm_layer(norm_layer)
|
||||
act_layer = get_act_layer(act_layer)
|
||||
self.window_size = window_size
|
||||
self.window_size = to_2tuple(window_size)
|
||||
self.is_windowed = any(self.window_size)
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.pool = None
|
||||
self.q_stride = q_stride
|
||||
if self.q_stride:
|
||||
self.pool = nn.MaxPool2d(
|
||||
q_pool = nn.MaxPool2d(
|
||||
kernel_size=q_stride,
|
||||
stride=q_stride,
|
||||
ceil_mode=False,
|
||||
)
|
||||
else:
|
||||
q_pool = None
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = MultiScaleAttention(
|
||||
dim,
|
||||
dim_out,
|
||||
num_heads=num_heads,
|
||||
q_pool=self.pool,
|
||||
q_pool=q_pool,
|
||||
)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
|
@ -176,6 +155,16 @@ class MultiScaleBlock(nn.Module):
|
|||
|
||||
if dim != dim_out:
|
||||
self.proj = nn.Linear(dim, dim_out)
|
||||
else:
|
||||
self.proj = nn.Identity()
|
||||
self.pool = None
|
||||
if self.q_stride:
|
||||
# note make a different instance for this Module so that it's not shared with attn module
|
||||
self.pool = nn.MaxPool2d(
|
||||
kernel_size=q_stride,
|
||||
stride=q_stride,
|
||||
ceil_mode=False,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
shortcut = x # B, H, W, C
|
||||
|
@ -183,29 +172,32 @@ class MultiScaleBlock(nn.Module):
|
|||
|
||||
# Skip connection
|
||||
if self.dim != self.dim_out:
|
||||
shortcut = do_pool(self.proj(x), self.pool)
|
||||
shortcut = self.proj(x)
|
||||
if self.pool is not None:
|
||||
shortcut = shortcut.permute(0, 3, 1, 2)
|
||||
shortcut = self.pool(shortcut).permute(0, 2, 3, 1)
|
||||
|
||||
# Window partition
|
||||
window_size = self.window_size
|
||||
feat_size = x.shape[1:3]
|
||||
pad_hw = 0, 0
|
||||
if window_size > 0:
|
||||
x, pad_hw = window_partition(x, window_size)
|
||||
H, W = x.shape[1:3]
|
||||
Hp, Wp = H, W # keep torchscript happy
|
||||
if self.is_windowed:
|
||||
x = window_partition(x, window_size)
|
||||
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
|
||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||
|
||||
# Window Attention + Q Pooling (if stage change)
|
||||
x = self.attn(x)
|
||||
if self.q_stride:
|
||||
if self.q_stride is not None:
|
||||
# Shapes have changed due to Q pooling
|
||||
window_size = self.window_size // self.q_stride[0]
|
||||
feat_size = shortcut.shape[1:3]
|
||||
|
||||
pad_h = (window_size - feat_size[0] % window_size) % window_size
|
||||
pad_w = (window_size - feat_size[1] % window_size) % window_size
|
||||
pad_hw = (feat_size[0] + pad_h, feat_size[1] + pad_w)
|
||||
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1])
|
||||
H, W = shortcut.shape[1:3]
|
||||
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
|
||||
|
||||
# Reverse window partition
|
||||
if self.window_size > 0:
|
||||
x = window_unpartition(x, window_size, pad_hw, feat_size)
|
||||
if self.is_windowed:
|
||||
x = window_unpartition(x, window_size, (Hp, Wp))
|
||||
x = x[:, :H, :W, :].contiguous() # unpad
|
||||
|
||||
x = shortcut + self.drop_path(x)
|
||||
|
||||
|
@ -364,12 +356,6 @@ class HieraDet(nn.Module):
|
|||
self.feature_info += [
|
||||
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
|
||||
|
||||
self.channel_list = (
|
||||
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
||||
if True else
|
||||
[self.blocks[-1].dim_out]
|
||||
)
|
||||
|
||||
self.num_features = self.head_hidden_size = embed_dim
|
||||
self.head = ClNormMlpClassifierHead(
|
||||
embed_dim,
|
||||
|
@ -509,7 +495,7 @@ class HieraDet(nn.Module):
|
|||
self.head.reset(0, reset_other=True)
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.patch_embed(x) # BHWC
|
||||
x = self._pos_embed(x)
|
||||
for i, blk in enumerate(self.blocks):
|
||||
|
|
Loading…
Reference in New Issue