Merge pull request #2209 from huggingface/fcossio-vit-maxpool

ViT pooling refactor
pull/2214/head
Ross Wightman 2024-06-17 07:51:12 -07:00 committed by GitHub
commit e41125cc83
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 73 additions and 34 deletions

View File

@ -2,4 +2,5 @@ torch>=1.7
torchvision
pyyaml
huggingface_hub
safetensors>=0.2
safetensors>=0.2
numpy<2.0

View File

@ -156,7 +156,7 @@ class EfficientNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -273,7 +273,7 @@ class GhostNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
# cannot meaningfully change pooling of efficient head after creation
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)

View File

@ -739,7 +739,7 @@ class HighResolutionNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -280,7 +280,7 @@ class InceptionV4(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -26,9 +26,9 @@ Adapted from https://github.com/sail-sg/metaformer, original copyright below
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
@ -548,7 +548,7 @@ class MetaFormer(nn.Module):
# if using MlpHead, dropout is handled by MlpHead
if num_classes > 0:
if self.use_mlp_head:
# FIXME hidden size
# FIXME not actually returning mlp hidden state right now as pre-logits.
final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate)
self.head_hidden_size = self.num_features
else:
@ -583,7 +583,7 @@ class MetaFormer(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes=0, global_pool=None):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
if global_pool is not None:
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()

View File

@ -518,7 +518,7 @@ class NASNetALarge(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -307,7 +307,7 @@ class PNASNet5Large(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -514,7 +514,7 @@ class RegNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, pool_type=global_pool)
def forward_intermediates(

View File

@ -12,6 +12,7 @@ Copyright 2020 Ross Wightman
from functools import partial
from math import ceil
from typing import Optional
import torch
import torch.nn as nn
@ -229,7 +230,7 @@ class RexNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)

View File

@ -161,7 +161,7 @@ class SelecSls(nn.Module):
def get_classifier(self) -> nn.Module:
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -337,7 +337,7 @@ class SENet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -386,6 +386,31 @@ class ParallelThingsBlock(nn.Module):
return self._forward(x)
def global_pool_nlc(
x: torch.Tensor,
pool_type: str = 'token',
num_prefix_tokens: int = 1,
reduce_include_prefix: bool = False,
):
if not pool_type:
return x
if pool_type == 'token':
x = x[:, 0] # class token
else:
x = x if reduce_include_prefix else x[:, num_prefix_tokens:]
if pool_type == 'avg':
x = x.mean(dim=1)
elif pool_type == 'avgmax':
x = 0.5 * (x.amax(dim=1) + x.mean(dim=1))
elif pool_type == 'max':
x = x.amax(dim=1)
else:
assert not pool_type, f'Unknown pool type {pool_type}'
return x
class VisionTransformer(nn.Module):
""" Vision Transformer
@ -400,7 +425,7 @@ class VisionTransformer(nn.Module):
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: Literal['', 'avg', 'token', 'map'] = 'token',
global_pool: Literal['', 'avg', 'avgmax', 'max', 'token', 'map'] = 'token',
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
@ -459,10 +484,10 @@ class VisionTransformer(nn.Module):
block_fn: Transformer block layer.
"""
super().__init__()
assert global_pool in ('', 'avg', 'token', 'map')
assert global_pool in ('', 'avg', 'avgmax', 'max', 'token', 'map')
assert class_token or global_pool != 'token'
assert pos_embed in ('', 'none', 'learn')
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
use_fc_norm = global_pool in ('avg', 'avgmax', 'max') if fc_norm is None else fc_norm
norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6)
act_layer = get_act_layer(act_layer) or nn.GELU
@ -596,10 +621,10 @@ class VisionTransformer(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes: int, global_pool = None) -> None:
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'token', 'map')
assert global_pool in ('', 'avg', 'avgmax', 'max', 'token', 'map')
if global_pool == 'map' and self.attn_pool is None:
assert False, "Cannot currently add attention pooling in reset_classifier()."
elif global_pool != 'map ' and self.attn_pool is not None:
@ -756,13 +781,16 @@ class VisionTransformer(nn.Module):
x = self.norm(x)
return x
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
def pool(self, x: torch.Tensor, pool_type: Optional[str] = None) -> torch.Tensor:
if self.attn_pool is not None:
x = self.attn_pool(x)
elif self.global_pool == 'avg':
x = x[:, self.num_prefix_tokens:].mean(dim=1)
elif self.global_pool:
x = x[:, 0] # class token
return x
pool_type = self.global_pool if pool_type is None else pool_type
x = global_pool_nlc(x, pool_type=pool_type, num_prefix_tokens=self.num_prefix_tokens)
return x
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
x = self.pool(x)
x = self.fc_norm(x)
x = self.head_drop(x)
return x if pre_logits else self.head(x)

View File

@ -381,7 +381,7 @@ class VisionTransformerRelPos(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes: int, global_pool=None):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'token')

View File

@ -536,7 +536,7 @@ class VisionTransformerSAM(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes=0, global_pool=None):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, global_pool)
def forward_intermediates(

View File

@ -11,7 +11,7 @@ for some reference, rewrote most of the code.
Hacked together by / Copyright 2020 Ross Wightman
"""
from typing import List
from typing import List, Optional
import torch
import torch.nn as nn
@ -134,9 +134,17 @@ class OsaStage(nn.Module):
else:
drop_path = None
blocks += [OsaBlock(
in_chs, mid_chs, out_chs, layer_per_block, residual=residual and i > 0, depthwise=depthwise,
attn=attn if last_block else '', norm_layer=norm_layer, act_layer=act_layer, drop_path=drop_path)
]
in_chs,
mid_chs,
out_chs,
layer_per_block,
residual=residual and i > 0,
depthwise=depthwise,
attn=attn if last_block else '',
norm_layer=norm_layer,
act_layer=act_layer,
drop_path=drop_path
)]
in_chs = out_chs
self.blocks = nn.Sequential(*blocks)
@ -252,8 +260,9 @@ class VovNet(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def reset_classifier(self, num_classes, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)
def forward_features(self, x):
x = self.stem(x)

View File

@ -174,7 +174,7 @@ class Xception(nn.Module):
def get_classifier(self) -> nn.Module:
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)

View File

@ -274,7 +274,7 @@ class XceptionAligned(nn.Module):
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, pool_type=global_pool)
def forward_features(self, x):