Merge pull request #1923 from huggingface/yehuitang-Add-GhostNetV2
ghostnetv2 cleanupsamvit_fix_and_rope^2
commit
e6aeb91ac1
|
@ -1,8 +1,11 @@
|
|||
"""
|
||||
An implementation of GhostNet Model as defined in:
|
||||
An implementation of GhostNet & GhostNetV2 Models as defined in:
|
||||
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907
|
||||
The train script of the model is similar to that of MobileNetV3
|
||||
GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf
|
||||
|
||||
The train script & code of models at:
|
||||
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
|
||||
Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py
|
||||
"""
|
||||
import math
|
||||
from functools import partial
|
||||
|
@ -33,7 +36,8 @@ class GhostModule(nn.Module):
|
|||
ratio=2,
|
||||
dw_size=3,
|
||||
stride=1,
|
||||
relu=True,
|
||||
use_act=True,
|
||||
act_layer=nn.ReLU,
|
||||
):
|
||||
super(GhostModule, self).__init__()
|
||||
self.out_chs = out_chs
|
||||
|
@ -43,13 +47,13 @@ class GhostModule(nn.Module):
|
|||
self.primary_conv = nn.Sequential(
|
||||
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
||||
nn.BatchNorm2d(init_chs),
|
||||
nn.ReLU(inplace=True) if relu else nn.Identity(),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
|
||||
self.cheap_operation = nn.Sequential(
|
||||
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False),
|
||||
nn.BatchNorm2d(new_chs),
|
||||
nn.ReLU(inplace=True) if relu else nn.Identity(),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
|
@ -59,6 +63,51 @@ class GhostModule(nn.Module):
|
|||
return out[:, :self.out_chs, :, :]
|
||||
|
||||
|
||||
class GhostModuleV2(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=1,
|
||||
ratio=2,
|
||||
dw_size=3,
|
||||
stride=1,
|
||||
use_act=True,
|
||||
act_layer=nn.ReLU,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_fn = nn.Sigmoid()
|
||||
self.out_chs = out_chs
|
||||
init_chs = math.ceil(out_chs / ratio)
|
||||
new_chs = init_chs * (ratio - 1)
|
||||
self.primary_conv = nn.Sequential(
|
||||
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
||||
nn.BatchNorm2d(init_chs),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
self.cheap_operation = nn.Sequential(
|
||||
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False),
|
||||
nn.BatchNorm2d(new_chs),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
self.short_conv = nn.Sequential(
|
||||
nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
||||
nn.BatchNorm2d(out_chs),
|
||||
nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False),
|
||||
nn.BatchNorm2d(out_chs),
|
||||
nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False),
|
||||
nn.BatchNorm2d(out_chs),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2))
|
||||
x1 = self.primary_conv(x)
|
||||
x2 = self.cheap_operation(x1)
|
||||
out = torch.cat([x1, x2], dim=1)
|
||||
return out[:, :self.out_chs, :, :] * F.interpolate(
|
||||
self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest')
|
||||
|
||||
|
||||
class GhostBottleneck(nn.Module):
|
||||
""" Ghost bottleneck w/ optional SE"""
|
||||
|
||||
|
@ -71,13 +120,17 @@ class GhostBottleneck(nn.Module):
|
|||
stride=1,
|
||||
act_layer=nn.ReLU,
|
||||
se_ratio=0.,
|
||||
mode='original',
|
||||
):
|
||||
super(GhostBottleneck, self).__init__()
|
||||
has_se = se_ratio is not None and se_ratio > 0.
|
||||
self.stride = stride
|
||||
|
||||
# Point-wise expansion
|
||||
self.ghost1 = GhostModule(in_chs, mid_chs, relu=True)
|
||||
if mode == 'original':
|
||||
self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer)
|
||||
else:
|
||||
self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer)
|
||||
|
||||
# Depth-wise convolution
|
||||
if self.stride > 1:
|
||||
|
@ -93,7 +146,7 @@ class GhostBottleneck(nn.Module):
|
|||
self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None
|
||||
|
||||
# Point-wise linear projection
|
||||
self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)
|
||||
self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False)
|
||||
|
||||
# shortcut
|
||||
if in_chs == out_chs and self.stride == 1:
|
||||
|
@ -140,6 +193,7 @@ class GhostNet(nn.Module):
|
|||
output_stride=32,
|
||||
global_pool='avg',
|
||||
drop_rate=0.2,
|
||||
version='v1',
|
||||
):
|
||||
super(GhostNet, self).__init__()
|
||||
# setting of inverted residual blocks
|
||||
|
@ -160,8 +214,8 @@ class GhostNet(nn.Module):
|
|||
|
||||
# building inverted residual blocks
|
||||
stages = nn.ModuleList([])
|
||||
block = GhostBottleneck
|
||||
stage_idx = 0
|
||||
layer_idx = 0
|
||||
net_stride = 2
|
||||
for cfg in self.cfgs:
|
||||
layers = []
|
||||
|
@ -169,8 +223,12 @@ class GhostNet(nn.Module):
|
|||
for k, exp_size, c, se_ratio, s in cfg:
|
||||
out_chs = make_divisible(c * width, 4)
|
||||
mid_chs = make_divisible(exp_size * width, 4)
|
||||
layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio))
|
||||
layer_kwargs = {}
|
||||
if version == 'v2' and layer_idx > 1:
|
||||
layer_kwargs['mode'] = 'attn'
|
||||
layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs))
|
||||
prev_chs = out_chs
|
||||
layer_idx += 1
|
||||
if s > 1:
|
||||
net_stride *= 2
|
||||
self.feature_info.append(dict(
|
||||
|
@ -246,6 +304,15 @@ class GhostNet(nn.Module):
|
|||
return x
|
||||
|
||||
|
||||
def checkpoint_filter_fn(state_dict, model: nn.Module):
|
||||
out_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
if 'total' in k:
|
||||
continue
|
||||
out_dict[k] = v
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
||||
"""
|
||||
Constructs a GhostNet model
|
||||
|
@ -285,6 +352,7 @@ def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
|||
GhostNet,
|
||||
variant,
|
||||
pretrained,
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
feature_cfg=dict(flatten_sequential=True),
|
||||
**model_kwargs,
|
||||
)
|
||||
|
@ -293,7 +361,7 @@ def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
|||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
||||
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
||||
**kwargs
|
||||
|
@ -303,8 +371,22 @@ def _cfg(url='', **kwargs):
|
|||
default_cfgs = generate_default_cfgs({
|
||||
'ghostnet_050.untrained': _cfg(),
|
||||
'ghostnet_100.in1k': _cfg(
|
||||
url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'),
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'
|
||||
),
|
||||
'ghostnet_130.untrained': _cfg(),
|
||||
'ghostnetv2_100.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar'
|
||||
),
|
||||
'ghostnetv2_130.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar'
|
||||
),
|
||||
'ghostnetv2_160.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar'
|
||||
),
|
||||
})
|
||||
|
||||
|
||||
|
@ -327,3 +409,24 @@ def ghostnet_130(pretrained=False, **kwargs) -> GhostNet:
|
|||
""" GhostNet-1.3x """
|
||||
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet:
|
||||
""" GhostNetV2-1.0x """
|
||||
model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet:
|
||||
""" GhostNetV2-1.3x """
|
||||
model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet:
|
||||
""" GhostNetV2-1.6x """
|
||||
model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs)
|
||||
return model
|
||||
|
|
Loading…
Reference in New Issue