📝 update docstrings for create_model
parent
3aa31f537d
commit
f0dc8a8267
|
@ -46,27 +46,59 @@ def create_model(
|
|||
no_jit: Optional[bool] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""Create a model
|
||||
"""Create a model.
|
||||
|
||||
Lookup model's entrypoint function and pass relevant args to create a new model.
|
||||
|
||||
**kwargs will be passed through entrypoint fn to timm.models.build_model_with_cfg()
|
||||
and then the model class __init__(). kwargs values set to None are pruned before passing.
|
||||
<Tip>
|
||||
**kwargs will be passed through entrypoint fn to ``timm.models.build_model_with_cfg()``
|
||||
and then the model class __init__(). kwargs values set to None are pruned before passing.
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
model_name (str): name of model to instantiate
|
||||
pretrained (bool): load pretrained ImageNet-1k weights if true
|
||||
pretrained_cfg (Union[str, dict, PretrainedCfg]): pass in external pretrained_cfg for model
|
||||
pretrained_cfg_overlay (dict): replace key-values in base pretrained_cfg with these
|
||||
checkpoint_path (str): path of checkpoint to load _after_ the model is initialized
|
||||
scriptable (bool): set layer config so that model is jit scriptable (not working for all models yet)
|
||||
exportable (bool): set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet)
|
||||
no_jit (bool): set layer config so that model doesn't utilize jit scripted layers (so far activations only)
|
||||
model_name (str):
|
||||
Name of model to instantiate.
|
||||
pretrained (`bool`, *optional*, defaults to `False`):
|
||||
If set to `True`, load pretrained ImageNet-1k weights.
|
||||
pretrained_cfg (Union[str, dict, PretrainedCfg], *optional*):
|
||||
Pass in an external pretrained_cfg for model.
|
||||
pretrained_cfg_overlay (dict, *optional*):
|
||||
Replace key-values in base pretrained_cfg with these.
|
||||
checkpoint_path (str, *optional*):
|
||||
Path of checkpoint to load _after_ the model is initialized.
|
||||
scriptable (bool, *optional*):
|
||||
Set layer config so that model is jit scriptable (not working for all models yet).
|
||||
exportable (bool, *optional*):
|
||||
Set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet).
|
||||
no_jit (bool, *optional*):
|
||||
Set layer config so that model doesn't utilize jit scripted layers (so far activations only).
|
||||
|
||||
Keyword Args:
|
||||
drop_rate (float): dropout rate for training (default: 0.0)
|
||||
global_pool (str): global pool type (default: 'avg')
|
||||
**: other kwargs are consumed by builder or model __init__()
|
||||
**Keyword Args**:
|
||||
|
||||
- **drop_rate** (float, *optional*, defaults to `0.0`):
|
||||
Dropout rate for training.
|
||||
- **global_pool** (str, *optional*, defaults to `'avg'`):
|
||||
Global pooling type.
|
||||
- All other kwargs are consumed by builder or model ``__init__()``.
|
||||
|
||||
Example:
|
||||
|
||||
```py
|
||||
>>> from timm import create_model
|
||||
|
||||
>>> # Create a MobileNetV3-Large model with no pretrained weights.
|
||||
>>> model = create_model('mobilenetv3_large_100')
|
||||
|
||||
>>> # Create a MobileNetV3-Large model with pretrained weights.
|
||||
>>> model = create_model('mobilenetv3_large_100', pretrained=True)
|
||||
>>> model.num_classes
|
||||
1000
|
||||
|
||||
>>> # Create a MobileNetV3-Large model with pretrained weights and a new head with 10 classes.
|
||||
>>> model = create_model('mobilenetv3_large_100', pretrained=True, num_classes=10)
|
||||
>>> model.num_classes
|
||||
10
|
||||
```
|
||||
"""
|
||||
# Parameters that aren't supported by all models or are intended to only override model defaults if set
|
||||
# should default to None in command line args/cfg. Remove them if they are present and not set so that
|
||||
|
|
Loading…
Reference in New Issue