mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add RepeatAugSampler as per DeiT RASampler impl, showing promise for current (distributed) training experiments.
This commit is contained in:
parent
ba9c1108a1
commit
f262137ff2
@ -49,3 +49,80 @@ class OrderedDistributedSampler(Sampler):
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
|
||||
class RepeatAugSampler(Sampler):
|
||||
"""Sampler that restricts data loading to a subset of the dataset for distributed,
|
||||
with repeated augmentation.
|
||||
It ensures that different each augmented version of a sample will be visible to a
|
||||
different process (GPU). Heavily based on torch.utils.data.DistributedSampler
|
||||
|
||||
This sampler was taken from https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py
|
||||
Used in
|
||||
Copyright (c) 2015-present, Facebook, Inc.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset,
|
||||
num_replicas=None,
|
||||
rank=None,
|
||||
shuffle=True,
|
||||
num_repeats=3,
|
||||
selected_round=256,
|
||||
selected_ratio=0,
|
||||
):
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
num_replicas = dist.get_world_size()
|
||||
if rank is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
rank = dist.get_rank()
|
||||
self.dataset = dataset
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
self.shuffle = shuffle
|
||||
self.num_repeats = num_repeats
|
||||
self.epoch = 0
|
||||
self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas))
|
||||
self.total_size = self.num_samples * self.num_replicas
|
||||
# Determine the number of samples to select per epoch for each rank.
|
||||
# num_selected logic defaults to be the same as original RASampler impl, but this one can be tweaked
|
||||
# via selected_ratio and selected_round args.
|
||||
selected_ratio = selected_ratio or num_replicas # ratio to reduce selected samples by, num_replicas if 0
|
||||
if selected_round:
|
||||
self.num_selected_samples = int(math.floor(
|
||||
len(self.dataset) // selected_round * selected_round / selected_ratio))
|
||||
else:
|
||||
self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio))
|
||||
|
||||
def __iter__(self):
|
||||
# deterministically shuffle based on epoch
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.epoch)
|
||||
if self.shuffle:
|
||||
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||||
else:
|
||||
indices = list(range(len(self.dataset)))
|
||||
|
||||
# produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
|
||||
indices = [x for x in indices for _ in range(self.num_repeats)]
|
||||
# add extra samples to make it evenly divisible
|
||||
padding_size = self.total_size - len(indices)
|
||||
indices += indices[:padding_size]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample per rank
|
||||
indices = indices[self.rank:self.total_size:self.num_replicas]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
# return up to num selected samples
|
||||
return iter(indices[:self.num_selected_samples])
|
||||
|
||||
def __len__(self):
|
||||
return self.num_selected_samples
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
self.epoch = epoch
|
Loading…
x
Reference in New Issue
Block a user