Add multi-tensor (foreach) version of Lion in style of upcoming PyTorch 2.0 optimizers
parent
709d5e0d9d
commit
f35d6ea57b
|
@ -16,6 +16,8 @@ Original Impl: https://github.com/google/automl/tree/master/lion
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
||||
|
@ -23,7 +25,15 @@ from torch.optim.optimizer import Optimizer
|
|||
class Lion(Optimizer):
|
||||
r"""Implements Lion algorithm."""
|
||||
|
||||
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=1e-4,
|
||||
betas=(0.9, 0.99),
|
||||
weight_decay=0.0,
|
||||
maximize=False,
|
||||
foreach=None,
|
||||
):
|
||||
"""Initialize the hyperparameters.
|
||||
|
||||
Args:
|
||||
|
@ -41,9 +51,21 @@ class Lion(Optimizer):
|
|||
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
|
||||
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
betas=betas,
|
||||
weight_decay=weight_decay,
|
||||
foreach=foreach,
|
||||
maximize=maximize,
|
||||
)
|
||||
super().__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super().__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('maximize', False)
|
||||
group.setdefault('foreach', None)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
@ -61,27 +83,144 @@ class Lion(Optimizer):
|
|||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
params_with_grad = []
|
||||
grads = []
|
||||
exp_avgs = []
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
params_with_grad.append(p)
|
||||
if p.grad.is_sparse:
|
||||
raise RuntimeError('Lion does not support sparse gradients')
|
||||
grads.append(p.grad)
|
||||
|
||||
# Perform stepweight decay
|
||||
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
||||
|
||||
grad = p.grad
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p)
|
||||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
exp_avg = state['exp_avg']
|
||||
beta1, beta2 = group['betas']
|
||||
exp_avgs.append(state['exp_avg'])
|
||||
|
||||
# Weight update
|
||||
update = exp_avg * beta1 + grad * (1 - beta1)
|
||||
p.add_(torch.sign(update), alpha=-group['lr'])
|
||||
# Decay the momentum running average coefficient
|
||||
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
|
||||
lion(
|
||||
params_with_grad,
|
||||
grads,
|
||||
exp_avgs,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
lr=group['lr'],
|
||||
weight_decay=group['weight_decay'],
|
||||
maximize=group['maximize'],
|
||||
foreach=group['foreach'],
|
||||
)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
def lion(
|
||||
params: List[torch.Tensor],
|
||||
grads: List[torch.Tensor],
|
||||
exp_avgs: List[torch.Tensor],
|
||||
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
|
||||
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
|
||||
maximize: bool = False,
|
||||
foreach: bool = None,
|
||||
*,
|
||||
beta1: float,
|
||||
beta2: float,
|
||||
lr: float,
|
||||
weight_decay: float,
|
||||
):
|
||||
r"""Functional API that performs Lion algorithm computation.
|
||||
"""
|
||||
if foreach is None:
|
||||
# Placeholder for more complex foreach logic to be added when value is not set
|
||||
foreach = False
|
||||
|
||||
if foreach and torch.jit.is_scripting():
|
||||
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
|
||||
|
||||
if foreach and not torch.jit.is_scripting():
|
||||
func = _multi_tensor_lion
|
||||
else:
|
||||
func = _single_tensor_lion
|
||||
|
||||
func(
|
||||
params,
|
||||
grads,
|
||||
exp_avgs,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
lr=lr,
|
||||
weight_decay=weight_decay,
|
||||
maximize=maximize,
|
||||
)
|
||||
|
||||
|
||||
def _single_tensor_lion(
|
||||
params: List[torch.Tensor],
|
||||
grads: List[torch.Tensor],
|
||||
exp_avgs: List[torch.Tensor],
|
||||
*,
|
||||
beta1: float,
|
||||
beta2: float,
|
||||
lr: float,
|
||||
weight_decay: float,
|
||||
maximize: bool,
|
||||
):
|
||||
for i, param in enumerate(params):
|
||||
grad = grads[i] if not maximize else -grads[i]
|
||||
exp_avg = exp_avgs[i]
|
||||
|
||||
if torch.is_complex(param):
|
||||
grad = torch.view_as_real(grad)
|
||||
exp_avg = torch.view_as_real(exp_avg)
|
||||
param = torch.view_as_real(param)
|
||||
|
||||
# Perform stepweight decay
|
||||
param.mul_(1 - lr * weight_decay)
|
||||
|
||||
# Weight update
|
||||
update = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1)
|
||||
param.add_(torch.sign(update), alpha=-lr)
|
||||
|
||||
# Decay the momentum running average coefficient
|
||||
exp_avg.lerp_(grad, 1 - beta2)
|
||||
|
||||
|
||||
def _multi_tensor_lion(
|
||||
params: List[torch.Tensor],
|
||||
grads: List[torch.Tensor],
|
||||
exp_avgs: List[torch.Tensor],
|
||||
*,
|
||||
beta1: float,
|
||||
beta2: float,
|
||||
lr: float,
|
||||
weight_decay: float,
|
||||
maximize: bool,
|
||||
):
|
||||
if len(params) == 0:
|
||||
return
|
||||
|
||||
if maximize:
|
||||
grads = torch._foreach_neg(tuple(grads)) # type: ignore[assignment]
|
||||
|
||||
grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads]
|
||||
exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs]
|
||||
params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params]
|
||||
|
||||
# Perform stepweight decay
|
||||
torch._foreach_mul_(params, 1 - lr * weight_decay)
|
||||
|
||||
# Weight update
|
||||
updates = torch._foreach_mul(exp_avgs, beta1)
|
||||
torch._foreach_add_(updates, grads, alpha=1 - beta1)
|
||||
|
||||
updates = [u.sign() for u in updates]
|
||||
torch._foreach_add_(params, updates, alpha=-lr)
|
||||
|
||||
# Decay the momentum running average coefficient
|
||||
torch._foreach_mul_(exp_avgs, beta2)
|
||||
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta2)
|
||||
|
|
|
@ -36,6 +36,12 @@ except ImportError:
|
|||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# optimizers to default to multi-tensor
|
||||
_DEFAULT_FOREACH = {
|
||||
'lion',
|
||||
}
|
||||
|
||||
|
||||
def param_groups_weight_decay(
|
||||
model: nn.Module,
|
||||
weight_decay=1e-5,
|
||||
|
@ -162,7 +168,8 @@ def optimizer_kwargs(cfg):
|
|||
opt=cfg.opt,
|
||||
lr=cfg.lr,
|
||||
weight_decay=cfg.weight_decay,
|
||||
momentum=cfg.momentum)
|
||||
momentum=cfg.momentum,
|
||||
)
|
||||
if getattr(cfg, 'opt_eps', None) is not None:
|
||||
kwargs['eps'] = cfg.opt_eps
|
||||
if getattr(cfg, 'opt_betas', None) is not None:
|
||||
|
@ -171,6 +178,8 @@ def optimizer_kwargs(cfg):
|
|||
kwargs['layer_decay'] = cfg.layer_decay
|
||||
if getattr(cfg, 'opt_args', None) is not None:
|
||||
kwargs.update(cfg.opt_args)
|
||||
if getattr(cfg, 'opt_foreach', None) is not None:
|
||||
kwargs['foreach'] = cfg.opt_foreach
|
||||
return kwargs
|
||||
|
||||
|
||||
|
@ -191,6 +200,7 @@ def create_optimizer_v2(
|
|||
lr: Optional[float] = None,
|
||||
weight_decay: float = 0.,
|
||||
momentum: float = 0.9,
|
||||
foreach: Optional[bool] = None,
|
||||
filter_bias_and_bn: bool = True,
|
||||
layer_decay: Optional[float] = None,
|
||||
param_group_fn: Optional[Callable] = None,
|
||||
|
@ -209,6 +219,7 @@ def create_optimizer_v2(
|
|||
lr: initial learning rate
|
||||
weight_decay: weight decay to apply in optimizer
|
||||
momentum: momentum for momentum based optimizers (others may use betas via kwargs)
|
||||
foreach: Enable / disable foreach (multi-tensor) operation if True / False. Choose safe default if None
|
||||
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay
|
||||
**kwargs: extra optimizer specific kwargs to pass through
|
||||
|
||||
|
@ -228,7 +239,8 @@ def create_optimizer_v2(
|
|||
model_or_params,
|
||||
weight_decay=weight_decay,
|
||||
layer_decay=layer_decay,
|
||||
no_weight_decay_list=no_weight_decay)
|
||||
no_weight_decay_list=no_weight_decay,
|
||||
)
|
||||
weight_decay = 0.
|
||||
elif weight_decay and filter_bias_and_bn:
|
||||
parameters = param_groups_weight_decay(model_or_params, weight_decay, no_weight_decay)
|
||||
|
@ -246,9 +258,16 @@ def create_optimizer_v2(
|
|||
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
|
||||
|
||||
opt_args = dict(weight_decay=weight_decay, **kwargs)
|
||||
|
||||
if lr is not None:
|
||||
opt_args.setdefault('lr', lr)
|
||||
|
||||
if foreach is None:
|
||||
if opt in _DEFAULT_FOREACH:
|
||||
opt_args.setdefault('foreach', True)
|
||||
else:
|
||||
opt_args['foreach'] = foreach
|
||||
|
||||
# basic SGD & related
|
||||
if opt_lower == 'sgd' or opt_lower == 'nesterov':
|
||||
# NOTE 'sgd' refers to SGD + nesterov momentum for legacy / backwards compat reasons
|
||||
|
|
Loading…
Reference in New Issue