From f4cf9775c35b5c3ce8c2470ed151e48d663b1e79 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Mon, 21 Aug 2023 12:28:34 -0700 Subject: [PATCH] Adding InceptionNeXt --- timm/models/__init__.py | 1 + timm/models/inception_next.py | 374 ++++++++++++++++++++++++++++++++++ 2 files changed, 375 insertions(+) create mode 100644 timm/models/inception_next.py diff --git a/timm/models/__init__.py b/timm/models/__init__.py index 1c255359..18828a5a 100644 --- a/timm/models/__init__.py +++ b/timm/models/__init__.py @@ -26,6 +26,7 @@ from .gcvit import * from .ghostnet import * from .hardcorenas import * from .hrnet import * +from .inception_next import * from .inception_resnet_v2 import * from .inception_v3 import * from .inception_v4 import * diff --git a/timm/models/inception_next.py b/timm/models/inception_next.py new file mode 100644 index 00000000..f51161ae --- /dev/null +++ b/timm/models/inception_next.py @@ -0,0 +1,374 @@ +""" +InceptionNeXt implementation, paper: https://arxiv.org/abs/2303.16900 + +Some code is borrowed from timm: https://github.com/huggingface/pytorch-image-models +""" + +from functools import partial + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, DropPath, to_2tuple +from ._manipulate import checkpoint_seq +from ._registry import register_model + + +class InceptionDWConv2d(nn.Module): + """ Inception depthweise convolution + """ + + def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125): + super().__init__() + + gc = int(in_channels * branch_ratio) # channel numbers of a convolution branch + self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size // 2, groups=gc) + self.dwconv_w = nn.Conv2d( + gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size // 2), groups=gc) + self.dwconv_h = nn.Conv2d( + gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size // 2, 0), groups=gc) + self.split_indexes = (in_channels - 3 * gc, gc, gc, gc) + + def forward(self, x): + x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1) + return torch.cat(( + x_id, + self.dwconv_hw(x_hw), + self.dwconv_w(x_w), + self.dwconv_h(x_h) + ), dim=1, + ) + + +class ConvMlp(nn.Module): + """ MLP using 1x1 convs that keeps spatial dims + copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py + """ + + def __init__( + self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, + norm_layer=None, bias=True, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + + self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0]) + self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() + self.act = act_layer() + self.drop = nn.Dropout(drop) + self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.norm(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + return x + + +class MlpHead(nn.Module): + """ MLP classification head + """ + + def __init__( + self, dim, num_classes=1000, mlp_ratio=3, act_layer=nn.GELU, + norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., bias=True): + super().__init__() + hidden_features = int(mlp_ratio * dim) + self.fc1 = nn.Linear(dim, hidden_features, bias=bias) + self.act = act_layer() + self.norm = norm_layer(hidden_features) + self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = x.mean((2, 3)) # global average pooling + x = self.fc1(x) + x = self.act(x) + x = self.norm(x) + x = self.drop(x) + x = self.fc2(x) + return x + + +class MetaNeXtBlock(nn.Module): + """ MetaNeXtBlock Block + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + ls_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__( + self, + dim, + token_mixer=nn.Identity, + norm_layer=nn.BatchNorm2d, + mlp_layer=ConvMlp, + mlp_ratio=4, + act_layer=nn.GELU, + ls_init_value=1e-6, + drop_path=0., + + ): + super().__init__() + self.token_mixer = token_mixer(dim) + self.norm = norm_layer(dim) + self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.token_mixer(x) + x = self.norm(x) + x = self.mlp(x) + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + x = self.drop_path(x) + shortcut + return x + + +class MetaNeXtStage(nn.Module): + def __init__( + self, + in_chs, + out_chs, + ds_stride=2, + depth=2, + drop_path_rates=None, + ls_init_value=1.0, + token_mixer=nn.Identity, + act_layer=nn.GELU, + norm_layer=None, + mlp_ratio=4, + ): + super().__init__() + self.grad_checkpointing = False + if ds_stride > 1: + self.downsample = nn.Sequential( + norm_layer(in_chs), + nn.Conv2d(in_chs, out_chs, kernel_size=ds_stride, stride=ds_stride), + ) + else: + self.downsample = nn.Identity() + + drop_path_rates = drop_path_rates or [0.] * depth + stage_blocks = [] + for i in range(depth): + stage_blocks.append(MetaNeXtBlock( + dim=out_chs, + drop_path=drop_path_rates[i], + ls_init_value=ls_init_value, + token_mixer=token_mixer, + act_layer=act_layer, + norm_layer=norm_layer, + mlp_ratio=mlp_ratio, + )) + in_chs = out_chs + self.blocks = nn.Sequential(*stage_blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class MetaNeXt(nn.Module): + r""" MetaNeXt + A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt` - https://arxiv.org/pdf/2203.xxxxx.pdf + + Args: + in_chans (int): Number of input image channels. Default: 3 + num_classes (int): Number of classes for classification head. Default: 1000 + depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3) + dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768) + token_mixers: Token mixer function. Default: nn.Identity + norm_layer: Normalziation layer. Default: nn.BatchNorm2d + act_layer: Activation function for MLP. Default: nn.GELU + mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3) + head_fn: classifier head + drop_rate (float): Head dropout rate + drop_path_rate (float): Stochastic depth rate. Default: 0. + ls_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__( + self, + in_chans=3, + num_classes=1000, + depths=(3, 3, 9, 3), + dims=(96, 192, 384, 768), + token_mixers=nn.Identity, + norm_layer=nn.BatchNorm2d, + act_layer=nn.GELU, + mlp_ratios=(4, 4, 4, 3), + head_fn=MlpHead, + drop_rate=0., + drop_path_rate=0., + ls_init_value=1e-6, + **kwargs, + ): + super().__init__() + + num_stage = len(depths) + if not isinstance(token_mixers, (list, tuple)): + token_mixers = [token_mixers] * num_stage + if not isinstance(mlp_ratios, (list, tuple)): + mlp_ratios = [mlp_ratios] * num_stage + + self.num_classes = num_classes + self.drop_rate = drop_rate + self.stem = nn.Sequential( + nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), + norm_layer(dims[0]) + ) + + self.stages = nn.Sequential() + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + prev_chs = dims[0] + # feature resolution stages, each consisting of multiple residual blocks + for i in range(num_stage): + out_chs = dims[i] + stages.append(MetaNeXtStage( + prev_chs, + out_chs, + ds_stride=2 if i > 0 else 1, + depth=depths[i], + drop_path_rates=dp_rates[i], + ls_init_value=ls_init_value, + act_layer=act_layer, + token_mixer=token_mixers[i], + norm_layer=norm_layer, + mlp_ratio=mlp_ratios[i], + )) + prev_chs = out_chs + self.stages = nn.Sequential(*stages) + self.num_features = prev_chs + self.head = head_fn(self.num_features, num_classes, drop=drop_rate) + self.apply(self._init_weights) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return {'norm'} + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x): + x = self.head(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = dict( + inception_next_tiny=_cfg( + url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth', + ), + inception_next_small=_cfg( + url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth', + ), + inception_next_base=_cfg( + url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth', + ), + inception_next_base_384=_cfg( + url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth', + input_size=(3, 384, 384), crop_pct=1.0, + ), +) + + +@register_model +def inception_next_tiny(pretrained=False, **kwargs): + model = MetaNeXt( + depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), + token_mixers=InceptionDWConv2d, + **kwargs + ) + model.default_cfg = default_cfgs['inception_next_tiny'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def inception_next_small(pretrained=False, **kwargs): + model = MetaNeXt( + depths=(3, 3, 27, 3), dims=(96, 192, 384, 768), + token_mixers=InceptionDWConv2d, + **kwargs + ) + model.default_cfg = default_cfgs['inception_next_small'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def inception_next_base(pretrained=False, **kwargs): + model = MetaNeXt( + depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024), + token_mixers=InceptionDWConv2d, + **kwargs + ) + model.default_cfg = default_cfgs['inception_next_base'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model + + +@register_model +def inception_next_base_384(pretrained=False, **kwargs): + model = MetaNeXt( + depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], + mlp_ratios=[4, 4, 4, 3], + token_mixers=InceptionDWConv2d, + **kwargs + ) + model.default_cfg = default_cfgs['inception_next_base_384'] + if pretrained: + state_dict = torch.hub.load_state_dict_from_url( + url=model.default_cfg['url'], map_location="cpu", check_hash=True) + model.load_state_dict(state_dict) + return model