mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Adding InceptionNeXt
This commit is contained in:
parent
d2e3c09ce1
commit
f4cf9775c3
@ -26,6 +26,7 @@ from .gcvit import *
|
||||
from .ghostnet import *
|
||||
from .hardcorenas import *
|
||||
from .hrnet import *
|
||||
from .inception_next import *
|
||||
from .inception_resnet_v2 import *
|
||||
from .inception_v3 import *
|
||||
from .inception_v4 import *
|
||||
|
374
timm/models/inception_next.py
Normal file
374
timm/models/inception_next.py
Normal file
@ -0,0 +1,374 @@
|
||||
"""
|
||||
InceptionNeXt implementation, paper: https://arxiv.org/abs/2303.16900
|
||||
|
||||
Some code is borrowed from timm: https://github.com/huggingface/pytorch-image-models
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import trunc_normal_, DropPath, to_2tuple
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import register_model
|
||||
|
||||
|
||||
class InceptionDWConv2d(nn.Module):
|
||||
""" Inception depthweise convolution
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125):
|
||||
super().__init__()
|
||||
|
||||
gc = int(in_channels * branch_ratio) # channel numbers of a convolution branch
|
||||
self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size // 2, groups=gc)
|
||||
self.dwconv_w = nn.Conv2d(
|
||||
gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size // 2), groups=gc)
|
||||
self.dwconv_h = nn.Conv2d(
|
||||
gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size // 2, 0), groups=gc)
|
||||
self.split_indexes = (in_channels - 3 * gc, gc, gc, gc)
|
||||
|
||||
def forward(self, x):
|
||||
x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)
|
||||
return torch.cat((
|
||||
x_id,
|
||||
self.dwconv_hw(x_hw),
|
||||
self.dwconv_w(x_w),
|
||||
self.dwconv_h(x_h)
|
||||
), dim=1,
|
||||
)
|
||||
|
||||
|
||||
class ConvMlp(nn.Module):
|
||||
""" MLP using 1x1 convs that keeps spatial dims
|
||||
copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU,
|
||||
norm_layer=None, bias=True, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
bias = to_2tuple(bias)
|
||||
|
||||
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
|
||||
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
|
||||
self.act = act_layer()
|
||||
self.drop = nn.Dropout(drop)
|
||||
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.norm(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
class MlpHead(nn.Module):
|
||||
""" MLP classification head
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, dim, num_classes=1000, mlp_ratio=3, act_layer=nn.GELU,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., bias=True):
|
||||
super().__init__()
|
||||
hidden_features = int(mlp_ratio * dim)
|
||||
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
|
||||
self.act = act_layer()
|
||||
self.norm = norm_layer(hidden_features)
|
||||
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.mean((2, 3)) # global average pooling
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.norm(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
class MetaNeXtBlock(nn.Module):
|
||||
""" MetaNeXtBlock Block
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
drop_path (float): Stochastic depth rate. Default: 0.0
|
||||
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
token_mixer=nn.Identity,
|
||||
norm_layer=nn.BatchNorm2d,
|
||||
mlp_layer=ConvMlp,
|
||||
mlp_ratio=4,
|
||||
act_layer=nn.GELU,
|
||||
ls_init_value=1e-6,
|
||||
drop_path=0.,
|
||||
|
||||
):
|
||||
super().__init__()
|
||||
self.token_mixer = token_mixer(dim)
|
||||
self.norm = norm_layer(dim)
|
||||
self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer)
|
||||
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = x
|
||||
x = self.token_mixer(x)
|
||||
x = self.norm(x)
|
||||
x = self.mlp(x)
|
||||
if self.gamma is not None:
|
||||
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
||||
x = self.drop_path(x) + shortcut
|
||||
return x
|
||||
|
||||
|
||||
class MetaNeXtStage(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_chs,
|
||||
out_chs,
|
||||
ds_stride=2,
|
||||
depth=2,
|
||||
drop_path_rates=None,
|
||||
ls_init_value=1.0,
|
||||
token_mixer=nn.Identity,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=None,
|
||||
mlp_ratio=4,
|
||||
):
|
||||
super().__init__()
|
||||
self.grad_checkpointing = False
|
||||
if ds_stride > 1:
|
||||
self.downsample = nn.Sequential(
|
||||
norm_layer(in_chs),
|
||||
nn.Conv2d(in_chs, out_chs, kernel_size=ds_stride, stride=ds_stride),
|
||||
)
|
||||
else:
|
||||
self.downsample = nn.Identity()
|
||||
|
||||
drop_path_rates = drop_path_rates or [0.] * depth
|
||||
stage_blocks = []
|
||||
for i in range(depth):
|
||||
stage_blocks.append(MetaNeXtBlock(
|
||||
dim=out_chs,
|
||||
drop_path=drop_path_rates[i],
|
||||
ls_init_value=ls_init_value,
|
||||
token_mixer=token_mixer,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
mlp_ratio=mlp_ratio,
|
||||
))
|
||||
in_chs = out_chs
|
||||
self.blocks = nn.Sequential(*stage_blocks)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.downsample(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint_seq(self.blocks, x)
|
||||
else:
|
||||
x = self.blocks(x)
|
||||
return x
|
||||
|
||||
|
||||
class MetaNeXt(nn.Module):
|
||||
r""" MetaNeXt
|
||||
A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt` - https://arxiv.org/pdf/2203.xxxxx.pdf
|
||||
|
||||
Args:
|
||||
in_chans (int): Number of input image channels. Default: 3
|
||||
num_classes (int): Number of classes for classification head. Default: 1000
|
||||
depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3)
|
||||
dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768)
|
||||
token_mixers: Token mixer function. Default: nn.Identity
|
||||
norm_layer: Normalziation layer. Default: nn.BatchNorm2d
|
||||
act_layer: Activation function for MLP. Default: nn.GELU
|
||||
mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3)
|
||||
head_fn: classifier head
|
||||
drop_rate (float): Head dropout rate
|
||||
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
||||
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
depths=(3, 3, 9, 3),
|
||||
dims=(96, 192, 384, 768),
|
||||
token_mixers=nn.Identity,
|
||||
norm_layer=nn.BatchNorm2d,
|
||||
act_layer=nn.GELU,
|
||||
mlp_ratios=(4, 4, 4, 3),
|
||||
head_fn=MlpHead,
|
||||
drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
ls_init_value=1e-6,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
num_stage = len(depths)
|
||||
if not isinstance(token_mixers, (list, tuple)):
|
||||
token_mixers = [token_mixers] * num_stage
|
||||
if not isinstance(mlp_ratios, (list, tuple)):
|
||||
mlp_ratios = [mlp_ratios] * num_stage
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.drop_rate = drop_rate
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
||||
norm_layer(dims[0])
|
||||
)
|
||||
|
||||
self.stages = nn.Sequential()
|
||||
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
||||
stages = []
|
||||
prev_chs = dims[0]
|
||||
# feature resolution stages, each consisting of multiple residual blocks
|
||||
for i in range(num_stage):
|
||||
out_chs = dims[i]
|
||||
stages.append(MetaNeXtStage(
|
||||
prev_chs,
|
||||
out_chs,
|
||||
ds_stride=2 if i > 0 else 1,
|
||||
depth=depths[i],
|
||||
drop_path_rates=dp_rates[i],
|
||||
ls_init_value=ls_init_value,
|
||||
act_layer=act_layer,
|
||||
token_mixer=token_mixers[i],
|
||||
norm_layer=norm_layer,
|
||||
mlp_ratio=mlp_ratios[i],
|
||||
))
|
||||
prev_chs = out_chs
|
||||
self.stages = nn.Sequential(*stages)
|
||||
self.num_features = prev_chs
|
||||
self.head = head_fn(self.num_features, num_classes, drop=drop_rate)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
for s in self.stages:
|
||||
s.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'norm'}
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
x = self.stages(x)
|
||||
return x
|
||||
|
||||
def forward_head(self, x):
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'stem.0', 'classifier': 'head.fc',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = dict(
|
||||
inception_next_tiny=_cfg(
|
||||
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth',
|
||||
),
|
||||
inception_next_small=_cfg(
|
||||
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth',
|
||||
),
|
||||
inception_next_base=_cfg(
|
||||
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth',
|
||||
),
|
||||
inception_next_base_384=_cfg(
|
||||
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth',
|
||||
input_size=(3, 384, 384), crop_pct=1.0,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@register_model
|
||||
def inception_next_tiny(pretrained=False, **kwargs):
|
||||
model = MetaNeXt(
|
||||
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768),
|
||||
token_mixers=InceptionDWConv2d,
|
||||
**kwargs
|
||||
)
|
||||
model.default_cfg = default_cfgs['inception_next_tiny']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def inception_next_small(pretrained=False, **kwargs):
|
||||
model = MetaNeXt(
|
||||
depths=(3, 3, 27, 3), dims=(96, 192, 384, 768),
|
||||
token_mixers=InceptionDWConv2d,
|
||||
**kwargs
|
||||
)
|
||||
model.default_cfg = default_cfgs['inception_next_small']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def inception_next_base(pretrained=False, **kwargs):
|
||||
model = MetaNeXt(
|
||||
depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024),
|
||||
token_mixers=InceptionDWConv2d,
|
||||
**kwargs
|
||||
)
|
||||
model.default_cfg = default_cfgs['inception_next_base']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def inception_next_base_384(pretrained=False, **kwargs):
|
||||
model = MetaNeXt(
|
||||
depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024],
|
||||
mlp_ratios=[4, 4, 4, 3],
|
||||
token_mixers=InceptionDWConv2d,
|
||||
**kwargs
|
||||
)
|
||||
model.default_cfg = default_cfgs['inception_next_base_384']
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
Loading…
x
Reference in New Issue
Block a user