mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
support rexnet, resnetv2, repvit and repghostnet
This commit is contained in:
parent
5e8cc616d4
commit
f8be741f0f
@ -6,7 +6,7 @@ Original implementation: https://github.com/ChengpengChen/RepGhost
|
||||
"""
|
||||
import copy
|
||||
from functools import partial
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -16,6 +16,7 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import SelectAdaptivePool2d, Linear, make_divisible
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._efficientnet_blocks import SqueezeExcite, ConvBnAct
|
||||
from ._features import feature_take_indices
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
|
||||
@ -294,6 +295,72 @@ class RepGhostNet(nn.Module):
|
||||
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
|
||||
self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = False,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to compatible intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
stage_ends = [-1] + [int(info['module'].split('.')[-1]) for info in self.feature_info[1:]]
|
||||
take_indices, max_index = feature_take_indices(len(stage_ends), indices)
|
||||
take_indices = [stage_ends[i]+1 for i in take_indices]
|
||||
max_index = stage_ends[max_index]
|
||||
|
||||
# forward pass
|
||||
feat_idx = 0
|
||||
x = self.conv_stem(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
x = self.bn1(x)
|
||||
x = self.act1(x)
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.blocks
|
||||
else:
|
||||
stages = self.blocks[:max_index + 1]
|
||||
|
||||
for feat_idx, stage in enumerate(stages, start=1):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
indices: Union[int, List[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
stage_ends = [-1] + [int(info['module'].split('.')[-1]) for info in self.feature_info[1:]]
|
||||
take_indices, max_index = feature_take_indices(len(stage_ends), indices)
|
||||
max_index = stage_ends[max_index]
|
||||
self.blocks = self.blocks[:max_index + 1] # truncate blocks w/ stem as idx 0
|
||||
if prune_head:
|
||||
self.reset_classifier(0, '')
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.conv_stem(x)
|
||||
x = self.bn1(x)
|
||||
|
@ -14,9 +14,7 @@ Paper: `RepViT: Revisiting Mobile CNN From ViT Perspective`
|
||||
|
||||
Adapted from official impl at https://github.com/jameslahm/RepViT
|
||||
"""
|
||||
|
||||
__all__ = ['RepVit']
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -24,9 +22,12 @@ import torch.nn as nn
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import SqueezeExcite, trunc_normal_, to_ntuple, to_2tuple
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
|
||||
__all__ = ['RepVit']
|
||||
|
||||
|
||||
class ConvNorm(nn.Sequential):
|
||||
def __init__(self, in_dim, out_dim, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
|
||||
@ -333,6 +334,62 @@ class RepVit(nn.Module):
|
||||
def set_distilled_training(self, enable=True):
|
||||
self.head.distilled_training = enable
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = False,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to compatible intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
||||
|
||||
# forward pass
|
||||
x = self.stem(x)
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.stages
|
||||
else:
|
||||
stages = self.stages[:max_index + 1]
|
||||
|
||||
for feat_idx, stage in enumerate(stages):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
indices: Union[int, List[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
||||
self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0
|
||||
if prune_head:
|
||||
self.reset_classifier(0, '')
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
|
@ -31,7 +31,7 @@ Original copyright of Google code below, modifications by Ross Wightman, Copyrig
|
||||
|
||||
from collections import OrderedDict # pylint: disable=g-importing-member
|
||||
from functools import partial
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -40,6 +40,7 @@ from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
||||
from timm.layers import GroupNormAct, BatchNormAct2d, EvoNorm2dS0, FilterResponseNormTlu2d, ClassifierHead, \
|
||||
DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d, get_act_layer, get_norm_act_layer, make_divisible
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._manipulate import checkpoint_seq, named_apply, adapt_input_conv
|
||||
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
||||
|
||||
@ -543,6 +544,70 @@ class ResNetV2(nn.Module):
|
||||
self.num_classes = num_classes
|
||||
self.head.reset(num_classes, global_pool)
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = False,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to compatible intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(5, indices)
|
||||
|
||||
# forward pass
|
||||
feat_idx = 0
|
||||
x = self.stem(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.stages
|
||||
else:
|
||||
stages = self.stages[:max_index]
|
||||
|
||||
for feat_idx, stage in enumerate(stages, start=1):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
x = self.norm(x)
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
indices: Union[int, List[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(5, indices)
|
||||
self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0
|
||||
if prune_norm:
|
||||
self.norm = nn.Identity()
|
||||
if prune_head:
|
||||
self.reset_classifier(0, '')
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
|
@ -12,7 +12,7 @@ Copyright 2020 Ross Wightman
|
||||
|
||||
from functools import partial
|
||||
from math import ceil
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -21,6 +21,7 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import ClassifierHead, create_act_layer, ConvNormAct, DropPath, make_divisible, SEModule
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._efficientnet_builder import efficientnet_init_weights
|
||||
from ._features import feature_take_indices
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import generate_default_cfgs, register_model
|
||||
|
||||
@ -234,6 +235,67 @@ class RexNet(nn.Module):
|
||||
self.num_classes = num_classes
|
||||
self.head.reset(num_classes, global_pool)
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = False,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to compatible intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
stage_ends = [int(info['module'].split('.')[-1]) for info in self.feature_info]
|
||||
take_indices, max_index = feature_take_indices(len(stage_ends), indices)
|
||||
take_indices = [stage_ends[i] for i in take_indices]
|
||||
max_index = stage_ends[max_index]
|
||||
|
||||
# forward pass
|
||||
x = self.stem(x)
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.features
|
||||
else:
|
||||
stages = self.features[:max_index + 1]
|
||||
|
||||
for feat_idx, stage in enumerate(stages):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
indices: Union[int, List[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
stage_ends = [int(info['module'].split('.')[-1]) for info in self.feature_info]
|
||||
take_indices, max_index = feature_take_indices(len(stage_ends), indices)
|
||||
max_index = stage_ends[max_index]
|
||||
self.features = self.features[:max_index + 1] # truncate blocks w/ stem as idx 0
|
||||
if prune_head:
|
||||
self.reset_classifier(0, '')
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.stem(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
|
Loading…
x
Reference in New Issue
Block a user