mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add --model-dtype (pure bfloat16/float16) support to inference.py
This commit is contained in:
parent
8ce197e33a
commit
fc0609bcb6
13
inference.py
13
inference.py
@ -105,6 +105,8 @@ parser.add_argument('--amp', action='store_true', default=False,
|
|||||||
help='use Native AMP for mixed precision training')
|
help='use Native AMP for mixed precision training')
|
||||||
parser.add_argument('--amp-dtype', default='float16', type=str,
|
parser.add_argument('--amp-dtype', default='float16', type=str,
|
||||||
help='lower precision AMP dtype (default: float16)')
|
help='lower precision AMP dtype (default: float16)')
|
||||||
|
parser.add_argument('--model-dtype', default=None, type=str,
|
||||||
|
help='Model dtype override (non-AMP) (default: float32)')
|
||||||
parser.add_argument('--fuser', default='', type=str,
|
parser.add_argument('--fuser', default='', type=str,
|
||||||
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
|
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
|
||||||
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs)
|
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs)
|
||||||
@ -161,9 +163,15 @@ def main():
|
|||||||
|
|
||||||
device = torch.device(args.device)
|
device = torch.device(args.device)
|
||||||
|
|
||||||
|
model_dtype = None
|
||||||
|
if args.model_dtype:
|
||||||
|
assert args.model_dtype in ('float32', 'float16', 'bfloat16')
|
||||||
|
model_dtype = getattr(torch, args.model_dtype)
|
||||||
|
|
||||||
# resolve AMP arguments based on PyTorch / Apex availability
|
# resolve AMP arguments based on PyTorch / Apex availability
|
||||||
amp_autocast = suppress
|
amp_autocast = suppress
|
||||||
if args.amp:
|
if args.amp:
|
||||||
|
assert model_dtype is None or model_dtype == torch.float32, 'float32 model dtype must be used with AMP'
|
||||||
assert args.amp_dtype in ('float16', 'bfloat16')
|
assert args.amp_dtype in ('float16', 'bfloat16')
|
||||||
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
|
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
|
||||||
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
|
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
|
||||||
@ -201,7 +209,7 @@ def main():
|
|||||||
if args.test_pool:
|
if args.test_pool:
|
||||||
model, test_time_pool = apply_test_time_pool(model, data_config)
|
model, test_time_pool = apply_test_time_pool(model, data_config)
|
||||||
|
|
||||||
model = model.to(device)
|
model = model.to(device=device, dtype=model_dtype)
|
||||||
model.eval()
|
model.eval()
|
||||||
if args.channels_last:
|
if args.channels_last:
|
||||||
model = model.to(memory_format=torch.channels_last)
|
model = model.to(memory_format=torch.channels_last)
|
||||||
@ -237,6 +245,7 @@ def main():
|
|||||||
use_prefetcher=True,
|
use_prefetcher=True,
|
||||||
num_workers=workers,
|
num_workers=workers,
|
||||||
device=device,
|
device=device,
|
||||||
|
img_dtype=model_dtype or torch.float32,
|
||||||
**data_config,
|
**data_config,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -280,7 +289,7 @@ def main():
|
|||||||
np_labels = to_label(np_indices)
|
np_labels = to_label(np_indices)
|
||||||
all_labels.append(np_labels)
|
all_labels.append(np_labels)
|
||||||
|
|
||||||
all_outputs.append(output.cpu().numpy())
|
all_outputs.append(output.float().cpu().numpy())
|
||||||
|
|
||||||
# measure elapsed time
|
# measure elapsed time
|
||||||
batch_time.update(time.time() - end)
|
batch_time.update(time.time() - end)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user