* factor out data related constants to own file
* move data related config helpers to own file
* add a variant of RandomResizeCrop that randomizes interpolation method
* remove old Numpy version of RandomErasing
* cleanup torch version of RandomErasing and use it in either GPU loader batch mode or single image cpu Transform
* All models have 'default_cfgs' dict
* load/resume/pretrained helpers factored out
* pretrained load operates on state_dict based on default_cfg
* test all models in validate
* schedule, optim factor factored out
* test time pool wrapper applied based on default_cfg