""" Transformer in Transformer (TNT) in PyTorch A PyTorch implement of TNT as described in 'Transformer in Transformer' - https://arxiv.org/abs/2103.00112 The official mindspore code is released and available at https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT The official pytorch code is released and available at https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tnt_pytorch """ import math from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.layers import Mlp, DropPath, trunc_normal_, _assert, to_2tuple, resample_abs_pos_embed from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint from ._registry import generate_default_cfgs, register_model __all__ = ['TNT'] # model_registry will add each entrypoint fn to this class Attention(nn.Module): """ Multi-Head Attention """ def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.hidden_dim = hidden_dim self.num_heads = num_heads head_dim = hidden_dim // num_heads self.head_dim = head_dim self.scale = head_dim ** -0.5 self.qk = nn.Linear(dim, hidden_dim * 2, bias=qkv_bias) self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop, inplace=True) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop, inplace=True) def forward(self, x): B, N, C = x.shape qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k = qk.unbind(0) # make torchscript happy (cannot use tensor as tuple) v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): """ TNT Block """ def __init__( self, dim, dim_out, num_pixel, num_heads_in=4, num_heads_out=12, mlp_ratio=4., qkv_bias=False, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, legacy=False, ): super().__init__() # Inner transformer self.norm_in = norm_layer(dim) self.attn_in = Attention( dim, dim, num_heads=num_heads_in, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) self.norm_mlp_in = norm_layer(dim) self.mlp_in = Mlp( in_features=dim, hidden_features=int(dim * 4), out_features=dim, act_layer=act_layer, drop=proj_drop, ) self.legacy = legacy if self.legacy: self.norm1_proj = norm_layer(dim) self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True) self.norm2_proj = None else: self.norm1_proj = norm_layer(dim * num_pixel) self.proj = nn.Linear(dim * num_pixel, dim_out, bias=False) self.norm2_proj = norm_layer(dim_out) # Outer transformer self.norm_out = norm_layer(dim_out) self.attn_out = Attention( dim_out, dim_out, num_heads=num_heads_out, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm_mlp = norm_layer(dim_out) self.mlp = Mlp( in_features=dim_out, hidden_features=int(dim_out * mlp_ratio), out_features=dim_out, act_layer=act_layer, drop=proj_drop, ) def forward(self, pixel_embed, patch_embed): # inner pixel_embed = pixel_embed + self.drop_path(self.attn_in(self.norm_in(pixel_embed))) pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed))) # outer B, N, C = patch_embed.size() if self.norm2_proj is None: patch_embed = torch.cat([ patch_embed[:, 0:1], patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1)), ], dim=1) else: patch_embed = torch.cat([ patch_embed[:, 0:1], patch_embed[:, 1:] + self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, N - 1, -1)))), ], dim=1) patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed))) patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed))) return pixel_embed, patch_embed class PixelEmbed(nn.Module): """ Image to Pixel Embedding """ def __init__( self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4, legacy=False, ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) # grid_size property necessary for resizing positional embedding self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) num_patches = (self.grid_size[0]) * (self.grid_size[1]) self.img_size = img_size self.patch_size = patch_size self.legacy = legacy self.num_patches = num_patches self.in_dim = in_dim new_patch_size = [math.ceil(ps / stride) for ps in patch_size] self.new_patch_size = new_patch_size self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride) if self.legacy: self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size) else: self.unfold = nn.Unfold(kernel_size=patch_size, stride=patch_size) def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]: if as_scalar: return max(self.patch_size) else: return self.patch_size def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]: return img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1] def forward(self, x: torch.Tensor, pixel_pos: torch.Tensor) -> torch.Tensor: B, C, H, W = x.shape _assert( H == self.img_size[0], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") _assert( W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") if self.legacy: x = self.proj(x) x = self.unfold(x) x = x.transpose(1, 2).reshape( B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1]) else: x = self.unfold(x) x = x.transpose(1, 2).reshape(B * self.num_patches, C, self.patch_size[0], self.patch_size[1]) x = self.proj(x) x = x + pixel_pos x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2) return x class TNT(nn.Module): """ Transformer in Transformer - https://arxiv.org/abs/2103.00112 """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, inner_dim=48, depth=12, num_heads_inner=4, num_heads_outer=12, mlp_ratio=4., qkv_bias=False, drop_rate=0., pos_drop_rate=0., proj_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, first_stride=4, legacy=False, ): super().__init__() assert global_pool in ('', 'token', 'avg') self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models self.num_prefix_tokens = 1 self.grad_checkpointing = False self.pixel_embed = PixelEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, in_dim=inner_dim, stride=first_stride, legacy=legacy, ) num_patches = self.pixel_embed.num_patches r = self.pixel_embed.feat_ratio() if hasattr(self.pixel_embed, 'feat_ratio') else patch_size self.num_patches = num_patches new_patch_size = self.pixel_embed.new_patch_size num_pixel = new_patch_size[0] * new_patch_size[1] self.norm1_proj = norm_layer(num_pixel * inner_dim) self.proj = nn.Linear(num_pixel * inner_dim, embed_dim) self.norm2_proj = norm_layer(embed_dim) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pixel_pos = nn.Parameter(torch.zeros(1, inner_dim, new_patch_size[0], new_patch_size[1])) self.pos_drop = nn.Dropout(p=pos_drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule blocks = [] for i in range(depth): blocks.append(Block( dim=inner_dim, dim_out=embed_dim, num_pixel=num_pixel, num_heads_in=num_heads_inner, num_heads_out=num_heads_outer, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, legacy=legacy, )) self.blocks = nn.ModuleList(blocks) self.feature_info = [ dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] self.norm = norm_layer(embed_dim) self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.cls_token, std=.02) trunc_normal_(self.patch_pos, std=.02) trunc_normal_(self.pixel_pos, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'patch_pos', 'pixel_pos', 'cls_token'} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^cls_token|patch_pos|pixel_pos|pixel_embed|norm[12]_proj|proj', # stem and embed / pos blocks=[ (r'^blocks\.(\d+)', None), (r'^norm', (99999,)), ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'token', 'avg') self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, return_prefix_tokens: bool = False, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if an int, if is a sequence, select by matching indices return_prefix_tokens: Return both prefix and spatial intermediate tokens norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' reshape = output_fmt == 'NCHW' intermediates = [] take_indices, max_index = feature_take_indices(len(self.blocks), indices) # forward pass B, _, height, width = x.shape pixel_embed = self.pixel_embed(x, self.pixel_pos) patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1)))) patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1) patch_embed = patch_embed + self.patch_pos patch_embed = self.pos_drop(patch_embed) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript blocks = self.blocks else: blocks = self.blocks[:max_index + 1] for i, blk in enumerate(blocks): pixel_embed, patch_embed = blk(pixel_embed, patch_embed) if i in take_indices: # normalize intermediates with final norm layer if enabled intermediates.append(self.norm(patch_embed) if norm else patch_embed) # process intermediates if self.num_prefix_tokens: # split prefix (e.g. class, distill) and spatial feature tokens prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] if reshape: # reshape to BCHW output format H, W = self.pixel_embed.dynamic_feat_size((height, width)) intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] if not torch.jit.is_scripting() and return_prefix_tokens: # return_prefix not support in torchscript due to poor type handling intermediates = list(zip(intermediates, prefix_tokens)) if intermediates_only: return intermediates patch_embed = self.norm(patch_embed) return patch_embed, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.blocks), indices) self.blocks = self.blocks[:max_index + 1] # truncate blocks if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x): B = x.shape[0] pixel_embed = self.pixel_embed(x, self.pixel_pos) patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1)))) patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1) patch_embed = patch_embed + self.patch_pos patch_embed = self.pos_drop(patch_embed) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): pixel_embed, patch_embed = checkpoint(blk, pixel_embed, patch_embed) else: pixel_embed, patch_embed = blk(pixel_embed, patch_embed) patch_embed = self.norm(patch_embed) return patch_embed def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'pixel_embed.proj', 'classifier': 'head', 'paper_ids': 'arXiv:2103.00112', 'paper_name': 'Transformer in Transformer', 'origin_url': 'https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tnt_pytorch', **kwargs } default_cfgs = generate_default_cfgs({ 'tnt_s_legacy_patch16_224.in1k': _cfg( hf_hub_id='timm/', #url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar', ), 'tnt_s_patch16_224.in1k': _cfg( hf_hub_id='timm/', #url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_s_81.5.pth.tar', ), 'tnt_b_patch16_224.in1k': _cfg( hf_hub_id='timm/', #url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/tnt/tnt_b_82.9.pth.tar', ), }) def checkpoint_filter_fn(state_dict, model): state_dict.pop('outer_tokens', None) if 'patch_pos' in state_dict: out_dict = state_dict else: out_dict = {} for k, v in state_dict.items(): k = k.replace('outer_pos', 'patch_pos') k = k.replace('inner_pos', 'pixel_pos') k = k.replace('patch_embed', 'pixel_embed') k = k.replace('proj_norm1', 'norm1_proj') k = k.replace('proj_norm2', 'norm2_proj') k = k.replace('inner_norm1', 'norm_in') k = k.replace('inner_attn', 'attn_in') k = k.replace('inner_norm2', 'norm_mlp_in') k = k.replace('inner_mlp', 'mlp_in') k = k.replace('outer_norm1', 'norm_out') k = k.replace('outer_attn', 'attn_out') k = k.replace('outer_norm2', 'norm_mlp') k = k.replace('outer_mlp', 'mlp') if k == 'pixel_pos' and model.pixel_embed.legacy == False: B, N, C = v.shape H = W = int(N ** 0.5) assert H * W == N v = v.permute(0, 2, 1).reshape(B, C, H, W) out_dict[k] = v """ convert patch embedding weight from manual patchify + linear proj to conv""" if out_dict['patch_pos'].shape != model.patch_pos.shape: out_dict['patch_pos'] = resample_abs_pos_embed( out_dict['patch_pos'], new_size=model.pixel_embed.grid_size, num_prefix_tokens=1, ) return out_dict def _create_tnt(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) model = build_model_with_cfg( TNT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs) return model @register_model def tnt_s_legacy_patch16_224(pretrained=False, **kwargs) -> TNT: model_cfg = dict( patch_size=16, embed_dim=384, inner_dim=24, depth=12, num_heads_outer=6, qkv_bias=False, legacy=True) model = _create_tnt('tnt_s_legacy_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def tnt_s_patch16_224(pretrained=False, **kwargs) -> TNT: model_cfg = dict( patch_size=16, embed_dim=384, inner_dim=24, depth=12, num_heads_outer=6, qkv_bias=False) model = _create_tnt('tnt_s_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def tnt_b_patch16_224(pretrained=False, **kwargs) -> TNT: model_cfg = dict( patch_size=16, embed_dim=640, inner_dim=40, depth=12, num_heads_outer=10, qkv_bias=False) model = _create_tnt('tnt_b_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model