""" ReXNet

A PyTorch impl of `ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network` -
https://arxiv.org/abs/2007.00992

Adapted from original impl at https://github.com/clovaai/rexnet
Copyright (c) 2020-present NAVER Corp. MIT license

Changes for timm, feature extraction, and rounded channel variant hacked together by Ross Wightman
Copyright 2020 Ross Wightman
"""

from functools import partial
from math import ceil
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import ClassifierHead, create_act_layer, ConvNormAct, DropPath, make_divisible, SEModule
from ._builder import build_model_with_cfg
from ._efficientnet_builder import efficientnet_init_weights
from ._features import feature_take_indices
from ._manipulate import checkpoint_seq
from ._registry import generate_default_cfgs, register_model

__all__ = ['RexNet']  # model_registry will add each entrypoint fn to this


SEWithNorm = partial(SEModule, norm_layer=nn.BatchNorm2d)


class LinearBottleneck(nn.Module):
    def __init__(
            self,
            in_chs,
            out_chs,
            stride,
            dilation=(1, 1),
            exp_ratio=1.0,
            se_ratio=0.,
            ch_div=1,
            act_layer='swish',
            dw_act_layer='relu6',
            drop_path=None,
    ):
        super(LinearBottleneck, self).__init__()
        self.use_shortcut = stride == 1 and dilation[0] == dilation[1] and in_chs <= out_chs
        self.in_channels = in_chs
        self.out_channels = out_chs

        if exp_ratio != 1.:
            dw_chs = make_divisible(round(in_chs * exp_ratio), divisor=ch_div)
            self.conv_exp = ConvNormAct(in_chs, dw_chs, act_layer=act_layer)
        else:
            dw_chs = in_chs
            self.conv_exp = None

        self.conv_dw = ConvNormAct(
            dw_chs,
            dw_chs,
            kernel_size=3,
            stride=stride,
            dilation=dilation[0],
            groups=dw_chs,
            apply_act=False,
        )
        if se_ratio > 0:
            self.se = SEWithNorm(dw_chs, rd_channels=make_divisible(int(dw_chs * se_ratio), ch_div))
        else:
            self.se = None
        self.act_dw = create_act_layer(dw_act_layer)

        self.conv_pwl = ConvNormAct(dw_chs, out_chs, 1, apply_act=False)
        self.drop_path = drop_path

    def feat_channels(self, exp=False):
        return self.conv_dw.out_channels if exp else self.out_channels

    def forward(self, x):
        shortcut = x
        if self.conv_exp is not None:
            x = self.conv_exp(x)
        x = self.conv_dw(x)
        if self.se is not None:
            x = self.se(x)
        x = self.act_dw(x)
        x = self.conv_pwl(x)
        if self.use_shortcut:
            if self.drop_path is not None:
                x = self.drop_path(x)
            x = torch.cat([x[:, 0:self.in_channels] + shortcut, x[:, self.in_channels:]], dim=1)
        return x


def _block_cfg(
        width_mult=1.0,
        depth_mult=1.0,
        initial_chs=16,
        final_chs=180,
        se_ratio=0.,
        ch_div=1,
):
    layers = [1, 2, 2, 3, 3, 5]
    strides = [1, 2, 2, 2, 1, 2]
    layers = [ceil(element * depth_mult) for element in layers]
    strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], [])
    exp_ratios = [1] * layers[0] + [6] * sum(layers[1:])
    depth = sum(layers[:]) * 3
    base_chs = initial_chs / width_mult if width_mult < 1.0 else initial_chs

    # The following channel configuration is a simple instance to make each layer become an expand layer.
    out_chs_list = []
    for i in range(depth // 3):
        out_chs_list.append(make_divisible(round(base_chs * width_mult), divisor=ch_div))
        base_chs += final_chs / (depth // 3 * 1.0)

    se_ratios = [0.] * (layers[0] + layers[1]) + [se_ratio] * sum(layers[2:])

    return list(zip(out_chs_list, exp_ratios, strides, se_ratios))


def _build_blocks(
        block_cfg,
        prev_chs,
        width_mult,
        ch_div=1,
        output_stride=32,
        act_layer='swish',
        dw_act_layer='relu6',
        drop_path_rate=0.,
):
    feat_chs = [prev_chs]
    feature_info = []
    curr_stride = 2
    dilation = 1
    features = []
    num_blocks = len(block_cfg)
    for block_idx, (chs, exp_ratio, stride, se_ratio) in enumerate(block_cfg):
        next_dilation = dilation
        if stride > 1:
            fname = 'stem' if block_idx == 0 else f'features.{block_idx - 1}'
            feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=fname)]
            if curr_stride >= output_stride:
                next_dilation = dilation * stride
                stride = 1
        block_dpr = drop_path_rate * block_idx / (num_blocks - 1)  # stochastic depth linear decay rule
        drop_path = DropPath(block_dpr) if block_dpr > 0. else None
        features.append(LinearBottleneck(
            in_chs=prev_chs,
            out_chs=chs,
            exp_ratio=exp_ratio,
            stride=stride,
            dilation=(dilation, next_dilation),
            se_ratio=se_ratio,
            ch_div=ch_div,
            act_layer=act_layer,
            dw_act_layer=dw_act_layer,
            drop_path=drop_path,
        ))
        curr_stride *= stride
        dilation = next_dilation
        prev_chs = chs
        feat_chs += [features[-1].feat_channels()]
    pen_chs = make_divisible(1280 * width_mult, divisor=ch_div)
    feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=f'features.{len(features) - 1}')]
    features.append(ConvNormAct(prev_chs, pen_chs, act_layer=act_layer))
    return features, feature_info


class RexNet(nn.Module):
    def __init__(
            self,
            in_chans=3,
            num_classes=1000,
            global_pool='avg',
            output_stride=32,
            initial_chs=16,
            final_chs=180,
            width_mult=1.0,
            depth_mult=1.0,
            se_ratio=1/12.,
            ch_div=1,
            act_layer='swish',
            dw_act_layer='relu6',
            drop_rate=0.2,
            drop_path_rate=0.,
    ):
        super(RexNet, self).__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.grad_checkpointing = False

        assert output_stride in (32, 16, 8)
        stem_base_chs = 32 / width_mult if width_mult < 1.0 else 32
        stem_chs = make_divisible(round(stem_base_chs * width_mult), divisor=ch_div)
        self.stem = ConvNormAct(in_chans, stem_chs, 3, stride=2, act_layer=act_layer)

        block_cfg = _block_cfg(width_mult, depth_mult, initial_chs, final_chs, se_ratio, ch_div)
        features, self.feature_info = _build_blocks(
            block_cfg,
            stem_chs,
            width_mult,
            ch_div,
            output_stride,
            act_layer,
            dw_act_layer,
            drop_path_rate,
        )
        self.num_features = self.head_hidden_size = features[-1].out_channels
        self.features = nn.Sequential(*features)

        self.head = ClassifierHead(self.num_features, num_classes, global_pool, drop_rate)

        efficientnet_init_weights(self)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^stem',
            blocks=r'^features\.(\d+)',
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head.fc

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool)

    def forward_intermediates(
            self,
            x: torch.Tensor,
            indices: Optional[Union[int, List[int]]] = None,
            norm: bool = False,
            stop_early: bool = False,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
    ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            x: Input image tensor
            indices: Take last n blocks if int, all if None, select matching indices if sequence
            norm: Apply norm layer to compatible intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs
            intermediates_only: Only return intermediate features
        Returns:

        """
        assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
        intermediates = []
        stage_ends = [int(info['module'].split('.')[-1]) for info in self.feature_info]
        take_indices, max_index = feature_take_indices(len(stage_ends), indices)
        take_indices = [stage_ends[i] for i in take_indices]
        max_index = stage_ends[max_index]

        # forward pass
        x = self.stem(x)
        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            stages = self.features
        else:
            stages = self.features[:max_index + 1]

        for feat_idx, stage in enumerate(stages):
            x = stage(x)
            if feat_idx in take_indices:
                intermediates.append(x) 

        if intermediates_only:
            return intermediates

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        stage_ends = [int(info['module'].split('.')[-1]) for info in self.feature_info]
        take_indices, max_index = feature_take_indices(len(stage_ends), indices)
        max_index = stage_ends[max_index]
        self.features = self.features[:max_index + 1]  # truncate blocks w/ stem as idx 0
        if prune_head:
            self.reset_classifier(0, '')
        return take_indices

    def forward_features(self, x):
        x = self.stem(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.features, x, flatten=True)
        else:
            x = self.features(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_rexnet(variant, pretrained, **kwargs):
    feature_cfg = dict(flatten_sequential=True)
    return build_model_with_cfg(
        RexNet,
        variant,
        pretrained,
        feature_cfg=feature_cfg,
        **kwargs,
    )


def _cfg(url='', **kwargs):
    return {
        'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.conv', 'classifier': 'head.fc',
        'license': 'mit', **kwargs
    }


default_cfgs = generate_default_cfgs({
    'rexnet_100.nav_in1k': _cfg(hf_hub_id='timm/'),
    'rexnet_130.nav_in1k': _cfg(hf_hub_id='timm/'),
    'rexnet_150.nav_in1k': _cfg(hf_hub_id='timm/'),
    'rexnet_200.nav_in1k': _cfg(hf_hub_id='timm/'),
    'rexnet_300.nav_in1k': _cfg(hf_hub_id='timm/'),
    'rexnetr_100.untrained': _cfg(),
    'rexnetr_130.untrained': _cfg(),
    'rexnetr_150.untrained': _cfg(),
    'rexnetr_200.sw_in12k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
    'rexnetr_300.sw_in12k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
    'rexnetr_200.sw_in12k': _cfg(
        hf_hub_id='timm/',
        num_classes=11821,
        crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
    'rexnetr_300.sw_in12k': _cfg(
        hf_hub_id='timm/',
        num_classes=11821,
        crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
})


@register_model
def rexnet_100(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 1.0x"""
    return _create_rexnet('rexnet_100', pretrained, **kwargs)


@register_model
def rexnet_130(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 1.3x"""
    return _create_rexnet('rexnet_130', pretrained, width_mult=1.3, **kwargs)


@register_model
def rexnet_150(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 1.5x"""
    return _create_rexnet('rexnet_150', pretrained, width_mult=1.5, **kwargs)


@register_model
def rexnet_200(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 2.0x"""
    return _create_rexnet('rexnet_200', pretrained, width_mult=2.0, **kwargs)


@register_model
def rexnet_300(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 3.0x"""
    return _create_rexnet('rexnet_300', pretrained, width_mult=3.0, **kwargs)


@register_model
def rexnetr_100(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 1.0x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_100', pretrained, ch_div=8, **kwargs)


@register_model
def rexnetr_130(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 1.3x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_130', pretrained, width_mult=1.3, ch_div=8, **kwargs)


@register_model
def rexnetr_150(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 1.5x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_150', pretrained, width_mult=1.5, ch_div=8, **kwargs)


@register_model
def rexnetr_200(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 2.0x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_200', pretrained, width_mult=2.0, ch_div=8, **kwargs)


@register_model
def rexnetr_300(pretrained=False, **kwargs) -> RexNet:
    """ReXNet V1 3.0x w/ rounded (mod 16) channels"""
    return _create_rexnet('rexnetr_300', pretrained, width_mult=3.0, ch_div=16, **kwargs)