""" An implementation of GhostNet & GhostNetV2 Models as defined in: GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf GhostNetV3: Exploring the Training Strategies for Compact Models. https://arxiv.org/abs/2404.11202 The train script & code of models at: Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv3_pytorch/ghostnetv3.py """ import math from functools import partial from typing import Any, Callable, Dict, List, Set, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, Linear, make_divisible, LayerType from timm.utils.model import reparameterize_model from ._builder import build_model_with_cfg from ._efficientnet_blocks import SqueezeExcite, ConvBnAct from ._features import feature_take_indices from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['GhostNet'] _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) class GhostModule(nn.Module): def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 1, ratio: int = 2, dw_size: int = 3, stride: int = 1, act_layer: LayerType = nn.ReLU, ): super(GhostModule, self).__init__() self.out_chs = out_chs init_chs = math.ceil(out_chs / ratio) new_chs = init_chs * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.out_chs, :, :] class GhostModuleV2(nn.Module): def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 1, ratio: int = 2, dw_size: int = 3, stride: int = 1, act_layer: LayerType = nn.ReLU, ): super().__init__() self.gate_fn = nn.Sigmoid() self.out_chs = out_chs init_chs = math.ceil(out_chs / ratio) new_chs = init_chs * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True), ) self.short_conv = nn.Sequential( nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x: torch.Tensor) -> torch.Tensor: res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2)) x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.out_chs, :, :] * F.interpolate( self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest') class GhostModuleV3(nn.Module): def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 1, ratio: int = 2, dw_size: int = 3, stride: int = 1, act_layer: LayerType = nn.ReLU, mode: str = 'original', ): super(GhostModuleV3, self).__init__() self.gate_fn = nn.Sigmoid() self.out_chs = out_chs init_chs = math.ceil(out_chs / ratio) new_chs = init_chs * (ratio - 1) self.mode = mode self.num_conv_branches = 3 self.infer_mode = False if not self.infer_mode: self.primary_conv = nn.Identity() self.cheap_operation = nn.Identity() self.primary_rpr_skip = None self.primary_rpr_scale = None self.primary_rpr_conv = nn.ModuleList( [ConvBnAct(in_chs, init_chs, kernel_size, stride, pad_type=kernel_size // 2, \ act_layer=None) for _ in range(self.num_conv_branches)] ) # Re-parameterizable scale branch self.primary_activation = act_layer(inplace=True) self.cheap_rpr_skip = nn.BatchNorm2d(init_chs) self.cheap_rpr_conv = nn.ModuleList( [ConvBnAct(init_chs, new_chs, dw_size, 1, pad_type=dw_size // 2, group_size=1, \ act_layer=None) for _ in range(self.num_conv_branches)] ) # Re-parameterizable scale branch self.cheap_rpr_scale = ConvBnAct(init_chs, new_chs, 1, 1, pad_type=0, group_size=1, act_layer=None) self.cheap_activation = act_layer(inplace=True) self.short_conv = nn.Sequential( nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size//2, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(1,5), stride=1, padding=(0,2), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(5,1), stride=1, padding=(2,0), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), ) if self.mode in ['shortcut'] else nn.Identity() self.in_channels = init_chs self.groups = init_chs self.kernel_size = dw_size def forward(self, x): if self.infer_mode: x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) else: x1 = 0 for primary_rpr_conv in self.primary_rpr_conv: x1 += primary_rpr_conv(x) x1 = self.primary_activation(x1) x2 = self.cheap_rpr_scale(x1) + self.cheap_rpr_skip(x1) for cheap_rpr_conv in self.cheap_rpr_conv: x2 += cheap_rpr_conv(x1) x2 = self.cheap_activation(x2) out = torch.cat([x1,x2], dim=1) if self.mode not in ['shortcut']: return out else: res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2)) return out[:,:self.out_chs,:,:] * F.interpolate( self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest') def _get_kernel_bias_primary(self): kernel_scale = 0 bias_scale = 0 if self.primary_rpr_scale is not None: kernel_scale, bias_scale = self._fuse_bn_tensor(self.primary_rpr_scale) pad = self.kernel_size // 2 kernel_scale = F.pad(kernel_scale, [pad, pad, pad, pad]) kernel_identity = 0 bias_identity = 0 if self.primary_rpr_skip is not None: kernel_identity, bias_identity = self._fuse_bn_tensor(self.primary_rpr_skip) kernel_conv = 0 bias_conv = 0 for ix in range(self.num_conv_branches): _kernel, _bias = self._fuse_bn_tensor(self.primary_rpr_conv[ix]) kernel_conv += _kernel bias_conv += _bias kernel_final = kernel_conv + kernel_scale + kernel_identity bias_final = bias_conv + bias_scale + bias_identity return kernel_final, bias_final def _get_kernel_bias_cheap(self): kernel_scale = 0 bias_scale = 0 if self.cheap_rpr_scale is not None: kernel_scale, bias_scale = self._fuse_bn_tensor(self.cheap_rpr_scale) pad = self.kernel_size // 2 kernel_scale = F.pad(kernel_scale, [pad, pad, pad, pad]) kernel_identity = 0 bias_identity = 0 if self.cheap_rpr_skip is not None: kernel_identity, bias_identity = self._fuse_bn_tensor(self.cheap_rpr_skip) kernel_conv = 0 bias_conv = 0 for ix in range(self.num_conv_branches): _kernel, _bias = self._fuse_bn_tensor(self.cheap_rpr_conv[ix]) kernel_conv += _kernel bias_conv += _bias kernel_final = kernel_conv + kernel_scale + kernel_identity bias_final = bias_conv + bias_scale + bias_identity return kernel_final, bias_final def _fuse_bn_tensor(self, branch): if isinstance(branch, ConvBnAct): kernel = branch.conv.weight running_mean = branch.bn1.running_mean running_var = branch.bn1.running_var gamma = branch.bn1.weight beta = branch.bn1.bias eps = branch.bn1.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups kernel_value = torch.zeros( (self.in_channels, input_dim, self.kernel_size, self.kernel_size), dtype=branch.weight.dtype, device=branch.weight.device ) for i in range(self.in_channels): kernel_value[i, i % input_dim, self.kernel_size // 2, self.kernel_size // 2] = 1 self.id_tensor = kernel_value kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def switch_to_deploy(self): if self.infer_mode: return primary_kernel, primary_bias = self._get_kernel_bias_primary() self.primary_conv = nn.Conv2d( in_channels=self.primary_rpr_conv[0].conv.in_channels, out_channels=self.primary_rpr_conv[0].conv.out_channels, kernel_size=self.primary_rpr_conv[0].conv.kernel_size, stride=self.primary_rpr_conv[0].conv.stride, padding=self.primary_rpr_conv[0].conv.padding, dilation=self.primary_rpr_conv[0].conv.dilation, groups=self.primary_rpr_conv[0].conv.groups, bias=True ) self.primary_conv.weight.data = primary_kernel self.primary_conv.bias.data = primary_bias self.primary_conv = nn.Sequential( self.primary_conv, self.primary_activation if self.primary_activation is not None else nn.Sequential() ) cheap_kernel, cheap_bias = self._get_kernel_bias_cheap() self.cheap_operation = nn.Conv2d( in_channels=self.cheap_rpr_conv[0].conv.in_channels, out_channels=self.cheap_rpr_conv[0].conv.out_channels, kernel_size=self.cheap_rpr_conv[0].conv.kernel_size, stride=self.cheap_rpr_conv[0].conv.stride, padding=self.cheap_rpr_conv[0].conv.padding, dilation=self.cheap_rpr_conv[0].conv.dilation, groups=self.cheap_rpr_conv[0].conv.groups, bias=True ) self.cheap_operation.weight.data = cheap_kernel self.cheap_operation.bias.data = cheap_bias self.cheap_operation = nn.Sequential( self.cheap_operation, self.cheap_activation if self.cheap_activation is not None else nn.Sequential() ) # Delete un-used branches for para in self.parameters(): para.detach_() if hasattr(self, 'primary_rpr_conv'): self.__delattr__('primary_rpr_conv') if hasattr(self, 'primary_rpr_scale'): self.__delattr__('primary_rpr_scale') if hasattr(self, 'primary_rpr_skip'): self.__delattr__('primary_rpr_skip') if hasattr(self, 'cheap_rpr_conv'): self.__delattr__('cheap_rpr_conv') if hasattr(self, 'cheap_rpr_scale'): self.__delattr__('cheap_rpr_scale') if hasattr(self, 'cheap_rpr_skip'): self.__delattr__('cheap_rpr_skip') self.infer_mode = True def reparameterize(self): self.switch_to_deploy() class GhostBottleneck(nn.Module): """ GhostV1/V2 bottleneck w/ optional SE""" def __init__( self, in_chs: int, mid_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, act_layer: Callable = nn.ReLU, se_ratio: float = 0., mode: str = 'original', ): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion if mode == 'original': self.ghost1 = GhostModule(in_chs, mid_chs, act_layer=act_layer) else: self.ghost1 = GhostModuleV2(in_chs, mid_chs, act_layer=act_layer) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) else: self.conv_dw = None self.bn_dw = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, act_layer=nn.Identity) # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.conv_dw is not None: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x class GhostBottleneckV3(nn.Module): """ GhostV3 bottleneck w/ optional SE""" def __init__( self, in_chs: int, mid_chs: int, out_chs: int, dw_kernel_size: int = 3, stride: int = 1, act_layer: LayerType = nn.ReLU, se_ratio: float = 0., mode: str = 'original', ): super(GhostBottleneckV3, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride self.num_conv_branches = 3 self.infer_mode = False if not self.infer_mode: self.conv_dw = nn.Identity() self.bn_dw = nn.Identity() # Point-wise expansion self.ghost1 = GhostModuleV3(in_chs, mid_chs, act_layer=act_layer, mode=mode) # Depth-wise convolution if self.stride > 1: self.dw_rpr_conv = nn.ModuleList( [ConvBnAct(mid_chs, mid_chs, dw_kernel_size, stride, pad_type=(dw_kernel_size - 1) // 2, group_size=1, act_layer=None) for _ in range(self.num_conv_branches)] ) # Re-parameterizable scale branch self.dw_rpr_scale = ConvBnAct(mid_chs, mid_chs, 1, 2, pad_type=0, group_size=1, act_layer=None) self.kernel_size = dw_kernel_size self.in_channels = mid_chs else: self.dw_rpr_conv = nn.ModuleList() self.dw_rpr_scale = nn.Identity() self.dw_rpr_skip = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else nn.Identity() # Point-wise linear projection self.ghost2 = GhostModuleV3(mid_chs, out_chs, act_layer=nn.Identity, mode='original') # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Identity() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.stride > 1: if self.infer_mode: x = self.conv_dw(x) x = self.bn_dw(x) else: x1 = self.dw_rpr_scale(x) for dw_rpr_conv in self.dw_rpr_conv: x1 += dw_rpr_conv(x) x = x1 # Squeeze-and-excitation x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x def _get_kernel_bias_dw(self): kernel_scale = 0 bias_scale = 0 if self.dw_rpr_scale is not None: kernel_scale, bias_scale = self._fuse_bn_tensor(self.dw_rpr_scale) pad = self.kernel_size // 2 kernel_scale = F.pad(kernel_scale, [pad, pad, pad, pad]) kernel_identity = 0 bias_identity = 0 if self.dw_rpr_skip is not None: kernel_identity, bias_identity = self._fuse_bn_tensor(self.dw_rpr_skip) kernel_conv = 0 bias_conv = 0 for ix in range(self.num_conv_branches): _kernel, _bias = self._fuse_bn_tensor(self.dw_rpr_conv[ix]) kernel_conv += _kernel bias_conv += _bias kernel_final = kernel_conv + kernel_scale + kernel_identity bias_final = bias_conv + bias_scale + bias_identity return kernel_final, bias_final def _fuse_bn_tensor(self, branch): if isinstance(branch, ConvBnAct): kernel = branch.conv.weight running_mean = branch.bn1.running_mean running_var = branch.bn1.running_var gamma = branch.bn1.weight beta = branch.bn1.bias eps = branch.bn1.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups kernel_value = torch.zeros( (self.in_channels, input_dim, self.kernel_size, self.kernel_size), dtype=branch.weight.dtype, device=branch.weight.device ) for i in range(self.in_channels): kernel_value[i, i % input_dim, self.kernel_size // 2, self.kernel_size // 2] = 1 self.id_tensor = kernel_value kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def switch_to_deploy(self): if self.infer_mode or self.stride == 1: return dw_kernel, dw_bias = self._get_kernel_bias_dw() self.conv_dw = nn.Conv2d( in_channels=self.dw_rpr_conv[0].conv.in_channels, out_channels=self.dw_rpr_conv[0].conv.out_channels, kernel_size=self.dw_rpr_conv[0].conv.kernel_size, stride=self.dw_rpr_conv[0].conv.stride, padding=self.dw_rpr_conv[0].conv.padding, dilation=self.dw_rpr_conv[0].conv.dilation, groups=self.dw_rpr_conv[0].conv.groups, bias=True ) self.conv_dw.weight.data = dw_kernel self.conv_dw.bias.data = dw_bias self.bn_dw = nn.Identity() # Delete un-used branches for para in self.parameters(): para.detach_() if hasattr(self, 'dw_rpr_conv'): self.__delattr__('dw_rpr_conv') if hasattr(self, 'dw_rpr_scale'): self.__delattr__('dw_rpr_scale') if hasattr(self, 'dw_rpr_skip'): self.__delattr__('dw_rpr_skip') self.infer_mode = True def reparameterize(self): self.switch_to_deploy() class GhostNet(nn.Module): def __init__( self, cfgs, num_classes: int = 1000, width: float = 1.0, in_chans: int = 3, output_stride: int = 32, global_pool: str = 'avg', drop_rate: float = 0.2, version: str = 'v1', ): super(GhostNet, self).__init__() # setting of inverted residual blocks assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' self.cfgs = cfgs self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] Bottleneck = GhostBottleneckV3 if version == 'v3' else GhostBottleneck # building first layer stem_chs = make_divisible(16 * width, 4) self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) self.bn1 = nn.BatchNorm2d(stem_chs) self.act1 = nn.ReLU(inplace=True) prev_chs = stem_chs # building inverted residual blocks stages = nn.ModuleList([]) stage_idx = 0 layer_idx = 0 net_stride = 2 for cfg in self.cfgs: layers = [] s = 1 for k, exp_size, c, se_ratio, s in cfg: out_chs = make_divisible(c * width, 4) mid_chs = make_divisible(exp_size * width, 4) layer_kwargs = {} if version == 'v2' and layer_idx > 1: layer_kwargs['mode'] = 'attn' if version == 'v3' and layer_idx > 1: layer_kwargs['mode'] = 'shortcut' layers.append(Bottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs)) prev_chs = out_chs layer_idx += 1 if s > 1: net_stride *= 2 self.feature_info.append(dict( num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) stages.append(nn.Sequential(*layers)) stage_idx += 1 out_chs = make_divisible(exp_size * width, 4) stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) self.pool_dim = prev_chs = out_chs self.blocks = nn.Sequential(*stages) # building last several layers self.num_features = prev_chs self.head_hidden_size = out_chs = 1280 self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) self.act2 = nn.ReLU(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() # FIXME init @torch.jit.ignore def no_weight_decay(self) -> Set: return set() @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict[str, Any]: matcher = dict( stem=r'^conv_stem|bn1', blocks=[ (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), (r'conv_head', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.classifier def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] stage_ends = [-1] + [int(info['module'].split('.')[-1]) for info in self.feature_info[1:]] take_indices, max_index = feature_take_indices(len(stage_ends), indices) take_indices = [stage_ends[i]+1 for i in take_indices] max_index = stage_ends[max_index] # forward pass feat_idx = 0 x = self.conv_stem(x) if feat_idx in take_indices: intermediates.append(x) x = self.bn1(x) x = self.act1(x) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.blocks else: stages = self.blocks[:max_index + 1] for feat_idx, stage in enumerate(stages, start=1): x = stage(x) if feat_idx in take_indices: intermediates.append(x) if intermediates_only: return intermediates return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ stage_ends = [-1] + [int(info['module'].split('.')[-1]) for info in self.feature_info[1:]] take_indices, max_index = feature_take_indices(len(stage_ends), indices) max_index = stage_ends[max_index] self.blocks = self.blocks[:max_index + 1] # truncate blocks w/ stem as idx 0 if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return x if pre_logits else self.classifier(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) x = self.forward_head(x) return x def convert_to_deploy(self): reparameterize_model(self, inplace=False) def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: nn.Module) -> Dict[str, torch.Tensor]: if 'state_dict' in state_dict: state_dict = state_dict['state_dict'] out_dict = {} for k, v in state_dict.items(): if 'bn.' in k and '.ghost' in k: k = k.replace('bn.', 'bn1.') if 'bn.' in k and '.dw_rpr_' in k: k = k.replace('bn.', 'bn1.') if 'total' in k: continue out_dict[k] = v return out_dict def _create_ghostnet(variant: str, width: float = 1.0, pretrained: bool = False, **kwargs: Any) -> GhostNet: """ Constructs a GhostNet model """ cfgs = [ # k, t, c, SE, s # stage1 [[3, 16, 16, 0, 1]], # stage2 [[3, 48, 24, 0, 2]], [[3, 72, 24, 0, 1]], # stage3 [[5, 72, 40, 0.25, 2]], [[5, 120, 40, 0.25, 1]], # stage4 [[3, 240, 80, 0, 2]], [[3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 0.25, 1], [3, 672, 112, 0.25, 1] ], # stage5 [[5, 672, 160, 0.25, 2]], [[5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1], [5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1] ] ] model_kwargs = dict( cfgs=cfgs, width=width, **kwargs, ) return build_model_with_cfg( GhostNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True), **model_kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = generate_default_cfgs({ 'ghostnet_050.untrained': _cfg(), 'ghostnet_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth' ), 'ghostnet_130.untrained': _cfg(), 'ghostnetv2_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar' ), 'ghostnetv2_130.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar' ), 'ghostnetv2_160.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar' ), 'ghostnetv3_050.untrained': _cfg(), 'ghostnetv3_100.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV3/ghostnetv3-1.0.pth.tar' ), 'ghostnetv3_130.untrained': _cfg(), 'ghostnetv3_160.untrained': _cfg(), }) @register_model def ghostnet_050(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-0.5x """ model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_100(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-1.0x """ model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_130(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-1.3x """ model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) return model @register_model def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.0x """ model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs) return model @register_model def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.3x """ model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs) return model @register_model def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.6x """ model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs) return model @register_model def ghostnetv3_050(pretrained: bool = False, **kwargs: Any) -> GhostNet: """ GhostNetV3-0.5x """ model = _create_ghostnet('ghostnetv3_050', width=0.5, pretrained=pretrained, version='v3', **kwargs) return model @register_model def ghostnetv3_100(pretrained: bool = False, **kwargs: Any) -> GhostNet: """ GhostNetV3-1.0x """ model = _create_ghostnet('ghostnetv3_100', width=1.0, pretrained=pretrained, version='v3', **kwargs) return model @register_model def ghostnetv3_130(pretrained: bool = False, **kwargs: Any) -> GhostNet: """ GhostNetV3-1.3x """ model = _create_ghostnet('ghostnetv3_130', width=1.3, pretrained=pretrained, version='v3', **kwargs) return model @register_model def ghostnetv3_160(pretrained: bool = False, **kwargs: Any) -> GhostNet: """ GhostNetV3-1.6x """ model = _create_ghostnet('ghostnetv3_160', width=1.6, pretrained=pretrained, version='v3', **kwargs) return model