# ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnet18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: ResNet Paper: Title: Deep Residual Learning for Image Recognition URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition Models: - Name: resnet18 In Collection: ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46827520 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet18 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L641 Weights: https://download.pytorch.org/models/resnet18-5c106cde.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 69.74% Top 5 Accuracy: 89.09% - Name: resnet26 In Collection: ResNet Metadata: FLOPs: 3026804736 Parameters: 16000000 File Size: 64129972 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet26 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L675 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.29% Top 5 Accuracy: 92.57% - Name: resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87290831 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet34 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L658 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.28% - Name: resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L691 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.04% Top 5 Accuracy: 94.39% - Name: resnetblur50 In Collection: ResNet Metadata: FLOPs: 6621606912 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Blur Pooling - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnetblur50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L1160 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.29% Top 5 Accuracy: 94.64% - Name: tv_resnet101 In Collection: ResNet Metadata: FLOPs: 10068547584 Parameters: 44550000 File Size: 178728960 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet101 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L761 Weights: https://download.pytorch.org/models/resnet101-5d3b4d8f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.37% Top 5 Accuracy: 93.56% - Name: tv_resnet152 In Collection: ResNet Metadata: FLOPs: 14857660416 Parameters: 60190000 File Size: 241530880 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet152 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L769 Weights: https://download.pytorch.org/models/resnet152-b121ed2d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.32% Top 5 Accuracy: 94.05% - Name: tv_resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87306240 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet34 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L745 Weights: https://download.pytorch.org/models/resnet34-333f7ec4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.3% Top 5 Accuracy: 91.42% - Name: tv_resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102502400 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet50 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L753 Weights: https://download.pytorch.org/models/resnet50-19c8e357.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.16% Top 5 Accuracy: 92.88% -->