""" TinyViT Paper: `TinyViT: Fast Pretraining Distillation for Small Vision Transformers` - https://arxiv.org/abs/2207.10666 Adapted from official impl at https://github.com/microsoft/Cream/tree/main/TinyViT """ __all__ = ['TinyVit'] import math import itertools from typing import Dict import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, to_2tuple, trunc_normal_, resample_relative_position_bias_table, _assert from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs class ConvNorm(torch.nn.Sequential): def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): super().__init__() self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False) self.bn = nn.BatchNorm2d(out_chs) torch.nn.init.constant_(self.bn.weight, bn_weight_init) torch.nn.init.constant_(self.bn.bias, 0) @torch.no_grad() def fuse(self): c, bn = self.conv, self.bn w = bn.weight / (bn.running_var + bn.eps)**0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / \ (bn.running_var + bn.eps)**0.5 m = torch.nn.Conv2d( w.size(1) * self.conv.groups, w.size(0), w.shape[2:], stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m class PatchEmbed(nn.Module): def __init__(self, in_chans, embed_dim, resolution, activation): super().__init__() img_size = to_2tuple(resolution) self.patches_resolution = (math.ceil(img_size[0] / 4), math.ceil(img_size[1] / 4)) self.num_patches = self.patches_resolution[0] * self.patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.stride = 4 n = embed_dim self.conv1 = ConvNorm(self.in_chans, n // 2, 3, 2, 1) self.act = activation() self.conv2 = ConvNorm(n // 2, n, 3, 2, 1) def forward(self, x): x = self.conv1(x) x = self.act(x) x = self.conv2(x) return x class MBConv(nn.Module): def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): super().__init__() self.in_chans = in_chans self.hidden_chans = int(in_chans * expand_ratio) self.out_chans = out_chans self.conv1 = ConvNorm(in_chans, self.hidden_chans, ks=1) self.act1 = activation() self.conv2 = ConvNorm(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans) self.act2 = activation() self.conv3 = ConvNorm(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) self.act3 = activation() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) x = self.conv3(x) x = self.drop_path(x) x += shortcut x = self.act3(x) return x class PatchMerging(nn.Module): def __init__(self, input_resolution, dim, out_dim, activation, in_fmt='BCHW'): super().__init__() self.input_resolution = input_resolution self.dim = dim self.out_dim = out_dim self.act = activation() self.conv1 = ConvNorm(dim, out_dim, 1, 1, 0) self.conv2 = ConvNorm(out_dim, out_dim, 3, 2, 1, groups=out_dim) self.conv3 = ConvNorm(out_dim, out_dim, 1, 1, 0) self.output_resolution = (math.ceil(input_resolution[0] / 2), math.ceil(input_resolution[1] / 2)) self.in_fmt = in_fmt assert self.in_fmt in ['BCHW', 'BLC'] def forward(self, x): if self.in_fmt == 'BLC': # (B, H * W, C) -> (B, C, H, W) H, W = self.input_resolution B = x.shape[0] x = x.view(B, H, W, -1).permute(0, 3, 1, 2) x = self.conv1(x) x = self.act(x) x = self.conv2(x) x = self.act(x) x = self.conv3(x) # (B, C, H, W) -> (B, H * W, C) x = x.flatten(2).transpose(1, 2) return x class ConvLayer(nn.Module): def __init__(self, dim, input_resolution, depth, activation, drop_path=0., downsample=None, conv_expand_ratio=4.): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth # build blocks self.blocks = nn.Sequential(*[ MBConv(dim, dim, conv_expand_ratio, activation, drop_path[i] if isinstance(drop_path, list) else drop_path, ) for i in range(depth)]) def forward(self, x): x = self.blocks(x) return x class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.norm = nn.LayerNorm(in_features) self.fc1 = nn.Linear(in_features, hidden_features) self.fc2 = nn.Linear(hidden_features, out_features) self.act = act_layer() self.drop = nn.Dropout(drop) def forward(self, x): x = self.norm(x) x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class ClassifierHead(nn.Module): def __init__( self, in_channels, num_classes=1000 ): super(ClassifierHead, self).__init__() self.norm_head = nn.LayerNorm(in_channels) self.fc = nn.Linear(in_channels, num_classes) if num_classes > 0 else nn.Identity() def forward(self, x): x = x.mean(1) x = self.norm_head(x) x = self.fc(x) return x class Attention(torch.nn.Module): attention_bias_cache: Dict[str, torch.Tensor] def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=(14, 14)): super().__init__() assert isinstance(resolution, tuple) and len(resolution) == 2 self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.nh_kd = nh_kd = key_dim * num_heads self.d = int(attn_ratio * key_dim) self.dh = int(attn_ratio * key_dim) * num_heads self.attn_ratio = attn_ratio h = self.dh + nh_kd * 2 self.norm = nn.LayerNorm(dim) self.qkv = nn.Linear(dim, h) self.proj = nn.Linear(self.dh, dim) points = list(itertools.product(range(resolution[0]), range(resolution[1]))) N = len(points) attention_offsets = {} idxs = [] for p1 in points: for p2 in points: offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) self.attention_bias_cache = {} @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if torch.jit.is_tracing() or self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, x): attn_bias = self.get_attention_biases(x.device) B, N, _ = x.shape # Normalization x = self.norm(x) qkv = self.qkv(x) # (B, N, num_heads, d) q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3) # (B, num_heads, N, d) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn + attn_bias attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2) x = x.reshape(B, N, self.dh) x = self.proj(x) return x class TinyVitBlock(nn.Module): """ TinyViT Block. Args: dim (int): Number of input channels. input_resolution (tuple[int, int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 local_conv_size (int): the kernel size of the convolution between Attention and MLP. Default: 3 activation: the activation function. Default: nn.GELU """ def __init__( self, dim, input_resolution, num_heads, window_size=7, mlp_ratio=4., drop=0., drop_path=0., local_conv_size=3, activation=nn.GELU ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads assert window_size > 0, 'window_size must be greater than 0' self.window_size = window_size self.mlp_ratio = mlp_ratio self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() assert dim % num_heads == 0, 'dim must be divisible by num_heads' head_dim = dim // num_heads window_resolution = (window_size, window_size) self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) mlp_hidden_dim = int(dim * mlp_ratio) mlp_activation = activation self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop) pad = local_conv_size // 2 self.local_conv = ConvNorm( dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape _assert(L == H * W, f"input feature has wrong size, expect {H * W}, got {L}") res_x = x if H == self.window_size and W == self.window_size: x = self.attn(x) else: x = x.view(B, H, W, C) pad_b = (self.window_size - H % self.window_size) % self.window_size pad_r = (self.window_size - W % self.window_size) % self.window_size padding = pad_b > 0 or pad_r > 0 if padding: x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) pH, pW = H + pad_b, W + pad_r nH = pH // self.window_size nW = pW // self.window_size # window partition x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape( B * nH * nW, self.window_size * self.window_size, C ) x = self.attn(x) # window reverse x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C) if padding: x = x[:, :H, :W].contiguous() x = x.view(B, L, C) x = res_x + self.drop_path(x) x = x.transpose(1, 2).reshape(B, C, H, W) x = self.local_conv(x) x = x.view(B, C, L).transpose(1, 2) x = x + self.drop_path(self.mlp(x)) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" class TinyVitStage(nn.Module): """ A basic TinyViT layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 activation: the activation function. Default: nn.GELU out_dim: the output dimension of the layer. Default: dim in_fmt: input format ('BCHW' or 'BLC'). Default: 'BCHW' """ def __init__( self, input_dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., drop=0., drop_path=0., downsample=None, local_conv_size=3, activation=nn.GELU, out_dim=None, in_fmt='BCHW' ): super().__init__() self.input_dim = input_dim self.out_dim = out_dim self.input_resolution = input_resolution self.depth = depth # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=input_dim, out_dim=self.out_dim, activation=activation, in_fmt=in_fmt) input_resolution = self.downsample.output_resolution else: self.downsample = nn.Identity() self.out_dim = self.input_dim # build blocks self.blocks = nn.Sequential(*[ TinyVitBlock(dim=self.out_dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance( drop_path, list) else drop_path, local_conv_size=local_conv_size, activation=activation, ) for i in range(depth)]) def forward(self, x): x = self.downsample(x) x = self.blocks(x) return x def extra_repr(self) -> str: return f"dim={self.out_dim}, input_resolution={self.input_resolution}, depth={self.depth}" class TinyVit(nn.Module): def __init__( self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_sizes=[7, 7, 14, 7], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, use_checkpoint=False, mbconv_expand_ratio=4.0, local_conv_size=3, layer_lr_decay=1.0 ): super().__init__() self.num_classes = num_classes self.depths = depths self.num_stages = len(depths) self.mlp_ratio = mlp_ratio self.grad_checkpointing = use_checkpoint activation = nn.GELU self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation) patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # stochastic depth rate rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # build stages stages = nn.ModuleList() input_resolution = patches_resolution stride = self.patch_embed.stride self.feature_info = [] for stage_idx in range(self.num_stages): if stage_idx == 0: out_dim = embed_dims[0] stage = ConvLayer( dim=embed_dims[0], input_resolution=input_resolution, depth=depths[0], activation=activation, drop_path=dpr[:depths[0]], downsample=None, conv_expand_ratio=mbconv_expand_ratio, ) else: out_dim = embed_dims[stage_idx] drop_path_rate = dpr[sum(depths[:stage_idx]):sum(depths[:stage_idx + 1])] if stage_idx == 1: in_fmt = 'BCHW' else: in_fmt = 'BLC' stage = TinyVitStage( num_heads=num_heads[stage_idx], window_size=window_sizes[stage_idx], mlp_ratio=self.mlp_ratio, drop=drop_rate, local_conv_size=local_conv_size, input_dim=embed_dims[stage_idx - 1], input_resolution=input_resolution, depth=depths[stage_idx], drop_path=drop_path_rate, downsample=PatchMerging, out_dim=out_dim, activation=activation, in_fmt=in_fmt ) input_resolution = (math.ceil(input_resolution[0] / 2), math.ceil(input_resolution[1] / 2)) stride *= 2 stages.append(stage) self.feature_info += [dict(num_chs=out_dim, reduction=stride, module=f'stages.{stage_idx}')] self.stages = nn.Sequential(*stages) # Classifier head self.num_features = embed_dims[-1] self.head = ClassifierHead(self.num_features, num_classes=num_classes) # init weights self.apply(self._init_weights) self.set_layer_lr_decay(layer_lr_decay) @torch.jit.ignore def set_layer_lr_decay(self, layer_lr_decay): decay_rate = layer_lr_decay # stages -> blocks (depth) depth = sum(self.depths) lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] def _set_lr_scale(m, scale): for p in m.parameters(): p.lr_scale = scale self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) i = 0 for stage in self.stages: if hasattr(stage, 'downsample') and stage.downsample is not None: stage.downsample.apply( lambda x: _set_lr_scale(x, lr_scales[i])) for block in stage.blocks: block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) i += 1 assert i == depth self.head.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) for k, p in self.named_parameters(): p.param_name = k def _check_lr_scale(m): for p in m.parameters(): assert hasattr(p, 'lr_scale'), p.param_name self.apply(_check_lr_scale) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay_keywords(self): return {'attention_biases'} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embed', blocks=[(r'^stages\.(\d+)', None)] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, **kwargs): self.num_classes = num_classes self.head = ClassifierHead(self.num_features, num_classes=num_classes) def forward_features(self, x): x = self.patch_embed(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x) else: x = self.stages(x) return x def forward_head(self, x): x = self.head(x) return x def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): # TODO: temporary use for testing, need change after weight convert if 'model' in state_dict.keys(): state_dict = state_dict['model'] targe_sd = model.state_dict() target_keys = list(targe_sd.keys()) out_dict = {} i = 0 for k, v in state_dict.items(): if not k.endswith('attention_bias_idxs'): if 'attention_biases' in k: # dynamic window size by resampling relative_position_bias_table # TODO: whether move this func into model for dynamic input resolution? (high risk) v = resample_relative_position_bias_table(v, targe_sd[target_keys[i]].shape) out_dict[target_keys[i]] = v i += 1 return out_dict def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.conv1.conv', 'classifier': 'head.fc', 'fixed_input_size': True, 'pool_size': None, 'input_size': (3, 224, 224), **kwargs, } default_cfgs = generate_default_cfgs({ 'tiny_vit_5m_224.dist_in22k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22k_distill.pth', num_classes=21841 ), 'tiny_vit_5m_224.dist_in22k_ft_in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22kto1k_distill.pth' ), 'tiny_vit_5m_224.in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_1k.pth' ), 'tiny_vit_11m_224.dist_in22k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22k_distill.pth', num_classes=21841 ), 'tiny_vit_11m_224.dist_in22k_ft_in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22kto1k_distill.pth' ), 'tiny_vit_11m_224.in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_1k.pth' ), 'tiny_vit_21m_224.dist_in22k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22k_distill.pth', num_classes=21841 ), 'tiny_vit_21m_224.dist_in22k_ft_in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_distill.pth' ), 'tiny_vit_21m_224.in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_1k.pth' ), 'tiny_vit_21m_384.dist_in22k_ft_in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_384_distill.pth', input_size=(3, 384, 384) ), 'tiny_vit_21m_512.dist_in22k_ft_in1k': _cfg( url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_512_distill.pth', input_size=(3, 512, 512) ), }) def _create_tiny_vit(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) model = build_model_with_cfg( TinyVit, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), pretrained_filter_fn=checkpoint_filter_fn, **kwargs ) return model @register_model def tiny_vit_5m_224(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[64, 128, 160, 320], depths=[2, 2, 6, 2], num_heads=[2, 4, 5, 10], window_sizes=[7, 7, 14, 7], drop_path_rate=0.0, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_5m_224', pretrained, **model_kwargs) @register_model def tiny_vit_11m_224(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[64, 128, 256, 448], depths=[2, 2, 6, 2], num_heads=[2, 4, 8, 14], window_sizes=[7, 7, 14, 7], drop_path_rate=0.1, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_11m_224', pretrained, **model_kwargs) @register_model def tiny_vit_21m_224(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[7, 7, 14, 7], drop_path_rate=0.2, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_21m_224', pretrained, **model_kwargs) @register_model def tiny_vit_21m_384(pretrained=False, **kwargs): model_kwargs = dict( img_size=384, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[12, 12, 24, 12], drop_path_rate=0.1, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_21m_384', pretrained, **model_kwargs) @register_model def tiny_vit_21m_512(pretrained=False, **kwargs): model_kwargs = dict( img_size=512, embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[16, 16, 32, 16], drop_path_rate=0.1, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_21m_512', pretrained, **model_kwargs)