""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below S3 (AutoFormerV2, https://arxiv.org/abs/2111.14725) Swin weights from - https://github.com/microsoft/Cream/tree/main/AutoFormerV2 Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import logging import math from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import PatchEmbed, Mlp, DropPath, ClassifierHead, to_2tuple, to_ntuple, trunc_normal_, \ _assert, use_fused_attn, resize_rel_pos_bias_table, resample_patch_embed, ndgrid from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._features_fx import register_notrace_function from ._manipulate import checkpoint_seq, named_apply from ._registry import generate_default_cfgs, register_model, register_model_deprecations from .vision_transformer import get_init_weights_vit __all__ = ['SwinTransformer'] # model_registry will add each entrypoint fn to this _logger = logging.getLogger(__name__) _int_or_tuple_2_t = Union[int, Tuple[int, int]] def window_partition( x: torch.Tensor, window_size: Tuple[int, int], ) -> torch.Tensor: """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse(windows, window_size: Tuple[int, int], H: int, W: int): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ C = windows.shape[-1] x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) return x def get_relative_position_index(win_h: int, win_w: int): # get pair-wise relative position index for each token inside the window coords = torch.stack(ndgrid(torch.arange(win_h), torch.arange(win_w))) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += win_h - 1 # shift to start from 0 relative_coords[:, :, 1] += win_w - 1 relative_coords[:, :, 0] *= 2 * win_w - 1 return relative_coords.sum(-1) # Wh*Ww, Wh*Ww class WindowAttention(nn.Module): """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports shifted and non-shifted windows. """ fused_attn: torch.jit.Final[bool] def __init__( self, dim: int, num_heads: int, head_dim: Optional[int] = None, window_size: _int_or_tuple_2_t = 7, qkv_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., ): """ Args: dim: Number of input channels. num_heads: Number of attention heads. head_dim: Number of channels per head (dim // num_heads if not set) window_size: The height and width of the window. qkv_bias: If True, add a learnable bias to query, key, value. attn_drop: Dropout ratio of attention weight. proj_drop: Dropout ratio of output. """ super().__init__() self.dim = dim self.window_size = to_2tuple(window_size) # Wh, Ww win_h, win_w = self.window_size self.window_area = win_h * win_w self.num_heads = num_heads head_dim = head_dim or dim // num_heads attn_dim = head_dim * num_heads self.scale = head_dim ** -0.5 self.fused_attn = use_fused_attn(experimental=True) # NOTE not tested for prime-time yet # define a parameter table of relative position bias, shape: 2*Wh-1 * 2*Ww-1, nH self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * win_h - 1) * (2 * win_w - 1), num_heads)) # get pair-wise relative position index for each token inside the window self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w), persistent=False) self.qkv = nn.Linear(dim, attn_dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(attn_dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def _get_rel_pos_bias(self) -> torch.Tensor: relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1)].view(self.window_area, self.window_area, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww return relative_position_bias.unsqueeze(0) def forward(self, x, mask: Optional[torch.Tensor] = None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) if self.fused_attn: attn_mask = self._get_rel_pos_bias() if mask is not None: num_win = mask.shape[0] mask = mask.view(1, num_win, 1, N, N).expand(B_ // num_win, -1, self.num_heads, -1, -1) attn_mask = attn_mask + mask.reshape(-1, self.num_heads, N, N) x = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn + self._get_rel_pos_bias() if mask is not None: num_win = mask.shape[0] attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B_, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): """ Swin Transformer Block. """ def __init__( self, dim: int, input_resolution: _int_or_tuple_2_t, num_heads: int = 4, head_dim: Optional[int] = None, window_size: _int_or_tuple_2_t = 7, shift_size: int = 0, mlp_ratio: float = 4., qkv_bias: bool = True, proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, ): """ Args: dim: Number of input channels. input_resolution: Input resolution. window_size: Window size. num_heads: Number of attention heads. head_dim: Enforce the number of channels per head shift_size: Shift size for SW-MSA. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: If True, add a learnable bias to query, key, value. proj_drop: Dropout rate. attn_drop: Attention dropout rate. drop_path: Stochastic depth rate. act_layer: Activation layer. norm_layer: Normalization layer. """ super().__init__() self.dim = dim self.input_resolution = input_resolution ws, ss = self._calc_window_shift(window_size, shift_size) self.window_size: Tuple[int, int] = ws self.shift_size: Tuple[int, int] = ss self.window_area = self.window_size[0] * self.window_size[1] self.mlp_ratio = mlp_ratio self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, num_heads=num_heads, head_dim=head_dim, window_size=to_2tuple(self.window_size), qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() if any(self.shift_size): # calculate attention mask for SW-MSA H, W = self.input_resolution H = math.ceil(H / self.window_size[0]) * self.window_size[0] W = math.ceil(W / self.window_size[1]) * self.window_size[1] img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 cnt = 0 for h in ( slice(0, -self.window_size[0]), slice(-self.window_size[0], -self.shift_size[0]), slice(-self.shift_size[0], None)): for w in ( slice(0, -self.window_size[1]), slice(-self.window_size[1], -self.shift_size[1]), slice(-self.shift_size[1], None)): img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_area) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask, persistent=False) def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]: target_window_size = to_2tuple(target_window_size) target_shift_size = to_2tuple(target_shift_size) window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] return tuple(window_size), tuple(shift_size) def _attn(self, x): B, H, W, C = x.shape # cyclic shift has_shift = any(self.shift_size) if has_shift: shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) else: shifted_x = x # pad for resolution not divisible by window size pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C shifted_x = shifted_x[:, :H, :W, :].contiguous() # reverse cyclic shift if has_shift: x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) else: x = shifted_x return x def forward(self, x): B, H, W, C = x.shape x = x + self.drop_path1(self._attn(self.norm1(x))) x = x.reshape(B, -1, C) x = x + self.drop_path2(self.mlp(self.norm2(x))) x = x.reshape(B, H, W, C) return x class PatchMerging(nn.Module): """ Patch Merging Layer. """ def __init__( self, dim: int, out_dim: Optional[int] = None, norm_layer: Callable = nn.LayerNorm, ): """ Args: dim: Number of input channels. out_dim: Number of output channels (or 2 * dim if None) norm_layer: Normalization layer. """ super().__init__() self.dim = dim self.out_dim = out_dim or 2 * dim self.norm = norm_layer(4 * dim) self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False) def forward(self, x): B, H, W, C = x.shape _assert(H % 2 == 0, f"x height ({H}) is not even.") _assert(W % 2 == 0, f"x width ({W}) is not even.") x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) x = self.norm(x) x = self.reduction(x) return x class SwinTransformerStage(nn.Module): """ A basic Swin Transformer layer for one stage. """ def __init__( self, dim: int, out_dim: int, input_resolution: Tuple[int, int], depth: int, downsample: bool = True, num_heads: int = 4, head_dim: Optional[int] = None, window_size: _int_or_tuple_2_t = 7, mlp_ratio: float = 4., qkv_bias: bool = True, proj_drop: float = 0., attn_drop: float = 0., drop_path: Union[List[float], float] = 0., norm_layer: Callable = nn.LayerNorm, ): """ Args: dim: Number of input channels. out_dim: Number of output channels. input_resolution: Input resolution. depth: Number of blocks. downsample: Downsample layer at the end of the layer. num_heads: Number of attention heads. head_dim: Channels per head (dim // num_heads if not set) window_size: Local window size. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: If True, add a learnable bias to query, key, value. proj_drop: Projection dropout rate. attn_drop: Attention dropout rate. drop_path: Stochastic depth rate. norm_layer: Normalization layer. """ super().__init__() self.dim = dim self.input_resolution = input_resolution self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution self.depth = depth self.grad_checkpointing = False window_size = to_2tuple(window_size) shift_size = tuple([w // 2 for w in window_size]) # patch merging layer if downsample: self.downsample = PatchMerging( dim=dim, out_dim=out_dim, norm_layer=norm_layer, ) else: assert dim == out_dim self.downsample = nn.Identity() # build blocks self.blocks = nn.Sequential(*[ SwinTransformerBlock( dim=out_dim, input_resolution=self.output_resolution, num_heads=num_heads, head_dim=head_dim, window_size=window_size, shift_size=0 if (i % 2 == 0) else shift_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth)]) def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class SwinTransformer(nn.Module): """ Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 """ def __init__( self, img_size: _int_or_tuple_2_t = 224, patch_size: int = 4, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 96, depths: Tuple[int, ...] = (2, 2, 6, 2), num_heads: Tuple[int, ...] = (3, 6, 12, 24), head_dim: Optional[int] = None, window_size: _int_or_tuple_2_t = 7, mlp_ratio: float = 4., qkv_bias: bool = True, drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0.1, embed_layer: Callable = PatchEmbed, norm_layer: Union[str, Callable] = nn.LayerNorm, weight_init: str = '', **kwargs, ): """ Args: img_size: Input image size. patch_size: Patch size. in_chans: Number of input image channels. num_classes: Number of classes for classification head. embed_dim: Patch embedding dimension. depths: Depth of each Swin Transformer layer. num_heads: Number of attention heads in different layers. head_dim: Dimension of self-attention heads. window_size: Window size. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: If True, add a learnable bias to query, key, value. drop_rate: Dropout rate. attn_drop_rate (float): Attention dropout rate. drop_path_rate (float): Stochastic depth rate. embed_layer: Patch embedding layer. norm_layer (nn.Module): Normalization layer. """ super().__init__() assert global_pool in ('', 'avg') self.num_classes = num_classes self.global_pool = global_pool self.output_fmt = 'NHWC' self.num_layers = len(depths) self.embed_dim = embed_dim self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.feature_info = [] if not isinstance(embed_dim, (tuple, list)): embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] # split image into non-overlapping patches self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], norm_layer=norm_layer, output_fmt='NHWC', ) self.patch_grid = self.patch_embed.grid_size # build layers head_dim = to_ntuple(self.num_layers)(head_dim) if not isinstance(window_size, (list, tuple)): window_size = to_ntuple(self.num_layers)(window_size) elif len(window_size) == 2: window_size = (window_size,) * self.num_layers assert len(window_size) == self.num_layers mlp_ratio = to_ntuple(self.num_layers)(mlp_ratio) dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] layers = [] in_dim = embed_dim[0] scale = 1 for i in range(self.num_layers): out_dim = embed_dim[i] layers += [SwinTransformerStage( dim=in_dim, out_dim=out_dim, input_resolution=( self.patch_grid[0] // scale, self.patch_grid[1] // scale ), depth=depths[i], downsample=i > 0, num_heads=num_heads[i], head_dim=head_dim[i], window_size=window_size[i], mlp_ratio=mlp_ratio[i], qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, )] in_dim = out_dim if i > 0: scale *= 2 self.feature_info += [dict(num_chs=out_dim, reduction=4 * scale, module=f'layers.{i}')] self.layers = nn.Sequential(*layers) self.norm = norm_layer(self.num_features) self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate, input_fmt=self.output_fmt, ) if weight_init != 'skip': self.init_weights(weight_init) @torch.jit.ignore def init_weights(self, mode=''): assert mode in ('jax', 'jax_nlhb', 'moco', '') head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. named_apply(get_init_weights_vit(mode, head_bias=head_bias), self) @torch.jit.ignore def no_weight_decay(self): nwd = set() for n, _ in self.named_parameters(): if 'relative_position_bias_table' in n: nwd.add(n) return nwd @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^patch_embed', # stem and embed blocks=r'^layers\.(\d+)' if coarse else [ (r'^layers\.(\d+).downsample', (0,)), (r'^layers\.(\d+)\.\w+\.(\d+)', None), (r'^norm', (99999,)), ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for l in self.layers: l.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes self.head.reset(num_classes, pool_type=global_pool) def forward_intermediates( self, x: torch.Tensor, indices: Union[int, List[int], Tuple[int]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.layers), indices) # forward pass x = self.patch_embed(x) num_stages = len(self.layers) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.layers else: stages = self.layers[:max_index + 1] for i, stage in enumerate(stages): x = stage(x) if i in take_indices: if norm and i == num_stages - 1: x_inter = self.norm(x) # applying final norm last intermediate else: x_inter = x x_inter = x_inter.permute(0, 3, 1, 2).contiguous() intermediates.append(x_inter) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int], Tuple[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.layers), indices) self.layers = self.layers[:max_index + 1] # truncate blocks if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x): x = self.patch_embed(x) x = self.layers(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=True) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): """ convert patch embedding weight from manual patchify + linear proj to conv""" old_weights = True if 'head.fc.weight' in state_dict: old_weights = False import re out_dict = {} state_dict = state_dict.get('model', state_dict) state_dict = state_dict.get('state_dict', state_dict) for k, v in state_dict.items(): if any([n in k for n in ('relative_position_index', 'attn_mask')]): continue # skip buffers that should not be persistent if 'patch_embed.proj.weight' in k: _, _, H, W = model.patch_embed.proj.weight.shape if v.shape[-2] != H or v.shape[-1] != W: v = resample_patch_embed( v, (H, W), interpolation='bicubic', antialias=True, verbose=True, ) if k.endswith('relative_position_bias_table'): m = model.get_submodule(k[:-29]) if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: v = resize_rel_pos_bias_table( v, new_window_size=m.window_size, new_bias_shape=m.relative_position_bias_table.shape, ) if old_weights: k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) k = k.replace('head.', 'head.fc.') out_dict[k] = v return out_dict def _create_swin_transformer(variant, pretrained=False, **kwargs): default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) out_indices = kwargs.pop('out_indices', default_out_indices) model = build_model_with_cfg( SwinTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'license': 'mit', **kwargs } default_cfgs = generate_default_cfgs({ 'swin_small_patch4_window7_224.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22kto1k_finetune.pth', ), 'swin_base_patch4_window7_224.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth',), 'swin_base_patch4_window12_384.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'swin_large_patch4_window7_224.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth',), 'swin_large_patch4_window12_384.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'swin_tiny_patch4_window7_224.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth',), 'swin_small_patch4_window7_224.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth',), 'swin_base_patch4_window7_224.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth',), 'swin_base_patch4_window12_384.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), # tiny 22k pretrain is worse than 1k, so moved after (untagged priority is based on order) 'swin_tiny_patch4_window7_224.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22kto1k_finetune.pth',), 'swin_tiny_patch4_window7_224.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22k.pth', num_classes=21841), 'swin_small_patch4_window7_224.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22k.pth', num_classes=21841), 'swin_base_patch4_window7_224.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', num_classes=21841), 'swin_base_patch4_window12_384.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), 'swin_large_patch4_window7_224.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth', num_classes=21841), 'swin_large_patch4_window12_384.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), 'swin_s3_tiny_224.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_t-1d53f6a8.pth'), 'swin_s3_small_224.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_s-3bb4c69d.pth'), 'swin_s3_base_224.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_b-a1e95db4.pth'), }) @register_model def swin_tiny_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-T @ 224x224, trained ImageNet-1k """ model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer( 'swin_tiny_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_small_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-S @ 224x224 """ model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer( 'swin_small_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_base_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-B @ 224x224 """ model_args = dict(patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) return _create_swin_transformer( 'swin_base_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_base_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-B @ 384x384 """ model_args = dict(patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) return _create_swin_transformer( 'swin_base_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_large_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-L @ 224x224 """ model_args = dict(patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) return _create_swin_transformer( 'swin_large_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_large_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-L @ 384x384 """ model_args = dict(patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) return _create_swin_transformer( 'swin_large_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_s3_tiny_224(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-S3-T @ 224x224, https://arxiv.org/abs/2111.14725 """ model_args = dict( patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer('swin_s3_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_s3_small_224(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-S3-S @ 224x224, https://arxiv.org/abs/2111.14725 """ model_args = dict( patch_size=4, window_size=(14, 14, 14, 7), embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer('swin_s3_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swin_s3_base_224(pretrained=False, **kwargs) -> SwinTransformer: """ Swin-S3-B @ 224x224, https://arxiv.org/abs/2111.14725 """ model_args = dict( patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 30, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer('swin_s3_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) register_model_deprecations(__name__, { 'swin_base_patch4_window7_224_in22k': 'swin_base_patch4_window7_224.ms_in22k', 'swin_base_patch4_window12_384_in22k': 'swin_base_patch4_window12_384.ms_in22k', 'swin_large_patch4_window7_224_in22k': 'swin_large_patch4_window7_224.ms_in22k', 'swin_large_patch4_window12_384_in22k': 'swin_large_patch4_window12_384.ms_in22k', })