""" Pyramid Vision Transformer v2 @misc{wang2021pvtv2, title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao}, year={2021}, eprint={2106.13797}, archivePrefix={arXiv}, primaryClass={cs.CV} } Based on Apache 2.0 licensed code at https://github.com/whai362/PVT Modifications and timm support by / Copyright 2022, Ross Wightman """ import math from typing import Tuple, List, Callable, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, to_2tuple, to_ntuple, trunc_normal_, LayerNorm, use_fused_attn from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs __all__ = ['PyramidVisionTransformerV2'] class MlpWithDepthwiseConv(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., extra_relu=False, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.relu = nn.ReLU() if extra_relu else nn.Identity() self.dwconv = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x, feat_size: List[int]): x = self.fc1(x) B, N, C = x.shape x = x.transpose(1, 2).view(B, C, feat_size[0], feat_size[1]) x = self.relu(x) x = self.dwconv(x) x = x.flatten(2).transpose(1, 2) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): fused_attn: torch.jit.Final[bool] def __init__( self, dim, num_heads=8, sr_ratio=1, linear_attn=False, qkv_bias=True, attn_drop=0., proj_drop=0. ): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) if not linear_attn: self.pool = None if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) else: self.sr = None self.norm = None self.act = None else: self.pool = nn.AdaptiveAvgPool2d(7) self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) self.norm = nn.LayerNorm(dim) self.act = nn.GELU() def forward(self, x, feat_size: List[int]): B, N, C = x.shape H, W = feat_size q = self.q(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) if self.pool is not None: x = x.permute(0, 2, 1).reshape(B, C, H, W) x = self.sr(self.pool(x)).reshape(B, C, -1).permute(0, 2, 1) x = self.norm(x) x = self.act(x) kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) else: if self.sr is not None: x = x.permute(0, 2, 1).reshape(B, C, H, W) x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) x = self.norm(x) kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) else: kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) if self.fused_attn: x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., sr_ratio=1, linear_attn=False, qkv_bias=False, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=LayerNorm, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, sr_ratio=sr_ratio, linear_attn=linear_attn, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = MlpWithDepthwiseConv( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, extra_relu=linear_attn, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x, feat_size: List[int]): x = x + self.drop_path1(self.attn(self.norm1(x), feat_size)) x = x + self.drop_path2(self.mlp(self.norm2(x), feat_size)) return x class OverlapPatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768): super().__init__() patch_size = to_2tuple(patch_size) assert max(patch_size) > stride, "Set larger patch_size than stride" self.patch_size = patch_size self.proj = nn.Conv2d( in_chans, embed_dim, patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): x = self.proj(x) x = x.permute(0, 2, 3, 1) x = self.norm(x) return x class PyramidVisionTransformerStage(nn.Module): def __init__( self, dim: int, dim_out: int, depth: int, downsample: bool = True, num_heads: int = 8, sr_ratio: int = 1, linear_attn: bool = False, mlp_ratio: float = 4.0, qkv_bias: bool = True, proj_drop: float = 0., attn_drop: float = 0., drop_path: Union[List[float], float] = 0.0, norm_layer: Callable = LayerNorm, ): super().__init__() self.grad_checkpointing = False if downsample: self.downsample = OverlapPatchEmbed( patch_size=3, stride=2, in_chans=dim, embed_dim=dim_out, ) else: assert dim == dim_out self.downsample = None self.blocks = nn.ModuleList([Block( dim=dim_out, num_heads=num_heads, sr_ratio=sr_ratio, linear_attn=linear_attn, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth)]) self.norm = norm_layer(dim_out) def forward(self, x): # x is either B, C, H, W (if downsample) or B, H, W, C if not if self.downsample is not None: # input to downsample is B, C, H, W x = self.downsample(x) # output B, H, W, C B, H, W, C = x.shape feat_size = (H, W) x = x.reshape(B, -1, C) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint.checkpoint(blk, x, feat_size) else: x = blk(x, feat_size) x = self.norm(x) x = x.reshape(B, feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2).contiguous() return x class PyramidVisionTransformerV2(nn.Module): def __init__( self, in_chans=3, num_classes=1000, global_pool='avg', depths=(3, 4, 6, 3), embed_dims=(64, 128, 256, 512), num_heads=(1, 2, 4, 8), sr_ratios=(8, 4, 2, 1), mlp_ratios=(8., 8., 4., 4.), qkv_bias=True, linear=False, drop_rate=0., proj_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=LayerNorm, ): super().__init__() self.num_classes = num_classes assert global_pool in ('avg', '') self.global_pool = global_pool self.depths = depths num_stages = len(depths) mlp_ratios = to_ntuple(num_stages)(mlp_ratios) num_heads = to_ntuple(num_stages)(num_heads) sr_ratios = to_ntuple(num_stages)(sr_ratios) assert(len(embed_dims)) == num_stages self.feature_info = [] self.patch_embed = OverlapPatchEmbed( patch_size=7, stride=4, in_chans=in_chans, embed_dim=embed_dims[0], ) dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] cur = 0 prev_dim = embed_dims[0] stages = [] for i in range(num_stages): stages += [PyramidVisionTransformerStage( dim=prev_dim, dim_out=embed_dims[i], depth=depths[i], downsample=i > 0, num_heads=num_heads[i], sr_ratio=sr_ratios[i], mlp_ratio=mlp_ratios[i], linear_attn=linear, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, )] prev_dim = embed_dims[i] cur += depths[i] self.feature_info += [dict(num_chs=prev_dim, reduction=4 * 2**i, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) # classification head self.num_features = embed_dims[-1] self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def freeze_patch_emb(self): self.patch_embed.requires_grad = False @torch.jit.ignore def no_weight_decay(self): return {} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embed', # stem and embed blocks=r'^stages\.(\d+)' ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('avg', '') self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x.mean(dim=(-1, -2)) x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _checkpoint_filter_fn(state_dict, model): """ Remap original checkpoints -> timm """ if 'patch_embed.proj.weight' in state_dict: return state_dict # non-original checkpoint, no remapping needed out_dict = {} import re for k, v in state_dict.items(): if k.startswith('patch_embed'): k = k.replace('patch_embed1', 'patch_embed') k = k.replace('patch_embed2', 'stages.1.downsample') k = k.replace('patch_embed3', 'stages.2.downsample') k = k.replace('patch_embed4', 'stages.3.downsample') k = k.replace('dwconv.dwconv', 'dwconv') k = re.sub(r'block(\d+).(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.blocks.{x.group(2)}', k) k = re.sub(r'^norm(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.norm', k) out_dict[k] = v return out_dict def _create_pvt2(variant, pretrained=False, **kwargs): default_out_indices = tuple(range(4)) out_indices = kwargs.pop('out_indices', default_out_indices) model = build_model_with_cfg( PyramidVisionTransformerV2, variant, pretrained, pretrained_filter_fn=_checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs, ) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', 'fixed_input_size': False, **kwargs } default_cfgs = generate_default_cfgs({ 'pvt_v2_b0.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b1.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b2.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b3.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b4.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b5.in1k': _cfg(hf_hub_id='timm/'), 'pvt_v2_b2_li.in1k': _cfg(hf_hub_id='timm/'), }) @register_model def pvt_v2_b0(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: model_args = dict(depths=(2, 2, 2, 2), embed_dims=(32, 64, 160, 256), num_heads=(1, 2, 5, 8)) return _create_pvt2('pvt_v2_b0', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def pvt_v2_b1(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: model_args = dict(depths=(2, 2, 2, 2), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) return _create_pvt2('pvt_v2_b1', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def pvt_v2_b2(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: model_args = dict(depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) return _create_pvt2('pvt_v2_b2', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def pvt_v2_b3(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: model_args = dict(depths=(3, 4, 18, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) return _create_pvt2('pvt_v2_b3', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def pvt_v2_b4(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: model_args = dict(depths=(3, 8, 27, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) return _create_pvt2('pvt_v2_b4', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def pvt_v2_b5(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: model_args = dict( depths=(3, 6, 40, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), mlp_ratios=(4, 4, 4, 4)) return _create_pvt2('pvt_v2_b5', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def pvt_v2_b2_li(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: model_args = dict( depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), linear=True) return _create_pvt2('pvt_v2_b2_li', pretrained=pretrained, **dict(model_args, **kwargs))