""" Swin Transformer V2 A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` - https://arxiv.org/abs/2111.09883 Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman """ # -------------------------------------------------------- # Swin Transformer V2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import math from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, ClassifierHead,\ resample_patch_embed, ndgrid, get_act_layer, LayerType from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._features_fx import register_notrace_function from ._registry import generate_default_cfgs, register_model, register_model_deprecations __all__ = ['SwinTransformerV2'] # model_registry will add each entrypoint fn to this _int_or_tuple_2_t = Union[int, Tuple[int, int]] def window_partition(x: torch.Tensor, window_size: Tuple[int, int]) -> torch.Tensor: """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse(windows: torch.Tensor, window_size: Tuple[int, int], img_size: Tuple[int, int]) -> torch.Tensor: """ Args: windows: (num_windows * B, window_size[0], window_size[1], C) window_size (Tuple[int, int]): Window size img_size (Tuple[int, int]): Image size Returns: x: (B, H, W, C) """ H, W = img_size C = windows.shape[-1] x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__( self, dim: int, window_size: Tuple[int, int], num_heads: int, qkv_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., pretrained_window_size: Tuple[int, int] = (0, 0), ) -> None: super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size self.num_heads = num_heads self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) # mlp to generate continuous relative position bias self.cpb_mlp = nn.Sequential( nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False) ) # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0]).to(torch.float32) relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1]).to(torch.float32) relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w)) relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) else: relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = torch.sign(relative_coords_table) * torch.log2( torch.abs(relative_coords_table) + 1.0) / math.log2(8) self.register_buffer("relative_coords_table", relative_coords_table, persistent=False) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(ndgrid(coords_h, coords_w)) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index, persistent=False) self.qkv = nn.Linear(dim, dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(dim)) self.register_buffer('k_bias', torch.zeros(dim), persistent=False) self.v_bias = nn.Parameter(torch.zeros(dim)) else: self.q_bias = None self.k_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # cosine attention attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp() attn = attn * logit_scale relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias = 16 * torch.sigmoid(relative_position_bias) attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: num_win = mask.shape[0] attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerV2Block(nn.Module): """ Swin Transformer Block. """ def __init__( self, dim: int, input_resolution: _int_or_tuple_2_t, num_heads: int, window_size: _int_or_tuple_2_t = 7, shift_size: _int_or_tuple_2_t = 0, mlp_ratio: float = 4., qkv_bias: bool = True, proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., act_layer: LayerType = "gelu", norm_layer: nn.Module = nn.LayerNorm, pretrained_window_size: _int_or_tuple_2_t = 0, ) -> None: """ Args: dim: Number of input channels. input_resolution: Input resolution. num_heads: Number of attention heads. window_size: Window size. shift_size: Shift size for SW-MSA. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: If True, add a learnable bias to query, key, value. proj_drop: Dropout rate. attn_drop: Attention dropout rate. drop_path: Stochastic depth rate. act_layer: Activation layer. norm_layer: Normalization layer. pretrained_window_size: Window size in pretraining. """ super().__init__() self.dim = dim self.input_resolution = to_2tuple(input_resolution) self.num_heads = num_heads ws, ss = self._calc_window_shift(window_size, shift_size) self.window_size: Tuple[int, int] = ws self.shift_size: Tuple[int, int] = ss self.window_area = self.window_size[0] * self.window_size[1] self.mlp_ratio = mlp_ratio act_layer = get_act_layer(act_layer) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, pretrained_window_size=to_2tuple(pretrained_window_size), ) self.norm1 = norm_layer(dim) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.norm2 = norm_layer(dim) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() if any(self.shift_size): # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 cnt = 0 for h in ( slice(0, -self.window_size[0]), slice(-self.window_size[0], -self.shift_size[0]), slice(-self.shift_size[0], None)): for w in ( slice(0, -self.window_size[1]), slice(-self.window_size[1], -self.shift_size[1]), slice(-self.shift_size[1], None)): img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_area) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask, persistent=False) def _calc_window_shift(self, target_window_size: _int_or_tuple_2_t, target_shift_size: _int_or_tuple_2_t) -> Tuple[Tuple[int, int], Tuple[int, int]]: target_window_size = to_2tuple(target_window_size) target_shift_size = to_2tuple(target_shift_size) window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] return tuple(window_size), tuple(shift_size) def _attn(self, x: torch.Tensor) -> torch.Tensor: B, H, W, C = x.shape # cyclic shift has_shift = any(self.shift_size) if has_shift: shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) shifted_x = window_reverse(attn_windows, self.window_size, self.input_resolution) # B H' W' C # reverse cyclic shift if has_shift: x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) else: x = shifted_x return x def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, C = x.shape x = x + self.drop_path1(self.norm1(self._attn(x))) x = x.reshape(B, -1, C) x = x + self.drop_path2(self.norm2(self.mlp(x))) x = x.reshape(B, H, W, C) return x class PatchMerging(nn.Module): """ Patch Merging Layer. """ def __init__(self, dim: int, out_dim: Optional[int] = None, norm_layer: nn.Module = nn.LayerNorm) -> None: """ Args: dim (int): Number of input channels. out_dim (int): Number of output channels (or 2 * dim if None) norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ super().__init__() self.dim = dim self.out_dim = out_dim or 2 * dim self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False) self.norm = norm_layer(self.out_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, C = x.shape _assert(H % 2 == 0, f"x height ({H}) is not even.") _assert(W % 2 == 0, f"x width ({W}) is not even.") x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) x = self.reduction(x) x = self.norm(x) return x class SwinTransformerV2Stage(nn.Module): """ A Swin Transformer V2 Stage. """ def __init__( self, dim: int, out_dim: int, input_resolution: _int_or_tuple_2_t, depth: int, num_heads: int, window_size: _int_or_tuple_2_t, downsample: bool = False, mlp_ratio: float = 4., qkv_bias: bool = True, proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., act_layer: Union[str, Callable] = 'gelu', norm_layer: nn.Module = nn.LayerNorm, pretrained_window_size: _int_or_tuple_2_t = 0, output_nchw: bool = False, ) -> None: """ Args: dim: Number of input channels. out_dim: Number of output channels. input_resolution: Input resolution. depth: Number of blocks. num_heads: Number of attention heads. window_size: Local window size. downsample: Use downsample layer at start of the block. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: If True, add a learnable bias to query, key, value. proj_drop: Projection dropout rate attn_drop: Attention dropout rate. drop_path: Stochastic depth rate. act_layer: Activation layer type. norm_layer: Normalization layer. pretrained_window_size: Local window size in pretraining. output_nchw: Output tensors on NCHW format instead of NHWC. """ super().__init__() self.dim = dim self.input_resolution = input_resolution self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution self.depth = depth self.output_nchw = output_nchw self.grad_checkpointing = False window_size = to_2tuple(window_size) shift_size = tuple([w // 2 for w in window_size]) # patch merging / downsample layer if downsample: self.downsample = PatchMerging(dim=dim, out_dim=out_dim, norm_layer=norm_layer) else: assert dim == out_dim self.downsample = nn.Identity() # build blocks self.blocks = nn.ModuleList([ SwinTransformerV2Block( dim=out_dim, input_resolution=self.output_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else shift_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, act_layer=act_layer, norm_layer=norm_layer, pretrained_window_size=pretrained_window_size, ) for i in range(depth)]) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.downsample(x) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint.checkpoint(blk, x) else: x = blk(x) return x def _init_respostnorm(self) -> None: for blk in self.blocks: nn.init.constant_(blk.norm1.bias, 0) nn.init.constant_(blk.norm1.weight, 0) nn.init.constant_(blk.norm2.bias, 0) nn.init.constant_(blk.norm2.weight, 0) class SwinTransformerV2(nn.Module): """ Swin Transformer V2 A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` - https://arxiv.org/abs/2111.09883 """ def __init__( self, img_size: _int_or_tuple_2_t = 224, patch_size: int = 4, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 96, depths: Tuple[int, ...] = (2, 2, 6, 2), num_heads: Tuple[int, ...] = (3, 6, 12, 24), window_size: _int_or_tuple_2_t = 7, mlp_ratio: float = 4., qkv_bias: bool = True, drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0.1, act_layer: Union[str, Callable] = 'gelu', norm_layer: Callable = nn.LayerNorm, pretrained_window_sizes: Tuple[int, ...] = (0, 0, 0, 0), **kwargs, ): """ Args: img_size: Input image size. patch_size: Patch size. in_chans: Number of input image channels. num_classes: Number of classes for classification head. embed_dim: Patch embedding dimension. depths: Depth of each Swin Transformer stage (layer). num_heads: Number of attention heads in different layers. window_size: Window size. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: If True, add a learnable bias to query, key, value. drop_rate: Head dropout rate. proj_drop_rate: Projection dropout rate. attn_drop_rate: Attention dropout rate. drop_path_rate: Stochastic depth rate. norm_layer: Normalization layer. act_layer: Activation layer type. patch_norm: If True, add normalization after patch embedding. pretrained_window_sizes: Pretrained window sizes of each layer. output_fmt: Output tensor format if not None, otherwise output 'NHWC' by default. """ super().__init__() self.num_classes = num_classes assert global_pool in ('', 'avg') self.global_pool = global_pool self.output_fmt = 'NHWC' self.num_layers = len(depths) self.embed_dim = embed_dim self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (self.num_layers - 1)) self.feature_info = [] if not isinstance(embed_dim, (tuple, list)): embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], norm_layer=norm_layer, output_fmt='NHWC', ) dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] layers = [] in_dim = embed_dim[0] scale = 1 for i in range(self.num_layers): out_dim = embed_dim[i] layers += [SwinTransformerV2Stage( dim=in_dim, out_dim=out_dim, input_resolution=( self.patch_embed.grid_size[0] // scale, self.patch_embed.grid_size[1] // scale), depth=depths[i], downsample=i > 0, num_heads=num_heads[i], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], act_layer=act_layer, norm_layer=norm_layer, pretrained_window_size=pretrained_window_sizes[i], )] in_dim = out_dim if i > 0: scale *= 2 self.feature_info += [dict(num_chs=out_dim, reduction=4 * scale, module=f'layers.{i}')] self.layers = nn.Sequential(*layers) self.norm = norm_layer(self.num_features) self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate, input_fmt=self.output_fmt, ) self.apply(self._init_weights) for bly in self.layers: bly._init_respostnorm() def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): nod = set() for n, m in self.named_modules(): if any([kw in n for kw in ("cpb_mlp", "logit_scale")]): nod.add(n) return nod @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^absolute_pos_embed|patch_embed', # stem and embed blocks=r'^layers\.(\d+)' if coarse else [ (r'^layers\.(\d+).downsample', (0,)), (r'^layers\.(\d+)\.\w+\.(\d+)', None), (r'^norm', (99999,)), ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for l in self.layers: l.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int], Tuple[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.layers), indices) # forward pass x = self.patch_embed(x) num_stages = len(self.layers) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.layers else: stages = self.layers[:max_index + 1] for i, stage in enumerate(stages): x = stage(x) if i in take_indices: if norm and i == num_stages - 1: x_inter = self.norm(x) # applying final norm last intermediate else: x_inter = x x_inter = x_inter.permute(0, 3, 1, 2).contiguous() intermediates.append(x_inter) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int], Tuple[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.layers), indices) self.layers = self.layers[:max_index + 1] # truncate blocks if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x): x = self.patch_embed(x) x = self.layers(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=True) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): state_dict = state_dict.get('model', state_dict) state_dict = state_dict.get('state_dict', state_dict) native_checkpoint = 'head.fc.weight' in state_dict out_dict = {} import re for k, v in state_dict.items(): if any([n in k for n in ('relative_position_index', 'relative_coords_table', 'attn_mask')]): continue # skip buffers that should not be persistent if 'patch_embed.proj.weight' in k: _, _, H, W = model.patch_embed.proj.weight.shape if v.shape[-2] != H or v.shape[-1] != W: v = resample_patch_embed( v, (H, W), interpolation='bicubic', antialias=True, verbose=True, ) if not native_checkpoint: # skip layer remapping for updated checkpoints k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) k = k.replace('head.', 'head.fc.') out_dict[k] = v return out_dict def _create_swin_transformer_v2(variant, pretrained=False, **kwargs): default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1)))) out_indices = kwargs.pop('out_indices', default_out_indices) model = build_model_with_cfg( SwinTransformerV2, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'license': 'mit', **kwargs } default_cfgs = generate_default_cfgs({ 'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to16_192to256_22kto1k_ft.pth', ), 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to24_192to384_22kto1k_ft.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, ), 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to16_192to256_22kto1k_ft.pth', ), 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to24_192to384_22kto1k_ft.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, ), 'swinv2_tiny_window8_256.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window8_256.pth', ), 'swinv2_tiny_window16_256.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window16_256.pth', ), 'swinv2_small_window8_256.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window8_256.pth', ), 'swinv2_small_window16_256.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window16_256.pth', ), 'swinv2_base_window8_256.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window8_256.pth', ), 'swinv2_base_window16_256.ms_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window16_256.pth', ), 'swinv2_base_window12_192.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12_192_22k.pth', num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6) ), 'swinv2_large_window12_192.ms_in22k': _cfg( hf_hub_id='timm/', url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12_192_22k.pth', num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6) ), }) @register_model def swinv2_tiny_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer_v2( 'swinv2_tiny_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_tiny_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer_v2( 'swinv2_tiny_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_small_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer_v2( 'swinv2_small_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_small_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) return _create_swin_transformer_v2( 'swinv2_small_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_base_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) return _create_swin_transformer_v2( 'swinv2_base_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_base_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=8, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) return _create_swin_transformer_v2( 'swinv2_base_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_base_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) return _create_swin_transformer_v2( 'swinv2_base_window12_192', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_base_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict( window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), pretrained_window_sizes=(12, 12, 12, 6)) return _create_swin_transformer_v2( 'swinv2_base_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_base_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict( window_size=24, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), pretrained_window_sizes=(12, 12, 12, 6)) return _create_swin_transformer_v2( 'swinv2_base_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_large_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict(window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) return _create_swin_transformer_v2( 'swinv2_large_window12_192', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_large_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict( window_size=16, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), pretrained_window_sizes=(12, 12, 12, 6)) return _create_swin_transformer_v2( 'swinv2_large_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swinv2_large_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2: """ """ model_args = dict( window_size=24, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), pretrained_window_sizes=(12, 12, 12, 6)) return _create_swin_transformer_v2( 'swinv2_large_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs)) register_model_deprecations(__name__, { 'swinv2_base_window12_192_22k': 'swinv2_base_window12_192.ms_in22k', 'swinv2_base_window12to16_192to256_22kft1k': 'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k', 'swinv2_base_window12to24_192to384_22kft1k': 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k', 'swinv2_large_window12_192_22k': 'swinv2_large_window12_192.ms_in22k', 'swinv2_large_window12to16_192to256_22kft1k': 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k', 'swinv2_large_window12to24_192to384_22kft1k': 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k', })