"""Pytorch impl of Aligned Xception 41, 65, 71 This is a correct, from scratch impl of Aligned Xception (Deeplab) models compatible with TF weights at https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md Hacked together by / Copyright 2020 Ross Wightman """ from functools import partial from typing import List, Dict, Type, Optional import torch import torch.nn as nn from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.layers import ClassifierHead, ConvNormAct, DropPath, PadType, create_conv2d, get_norm_act_layer from timm.layers.helpers import to_3tuple from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['XceptionAligned'] class SeparableConv2d(nn.Module): def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: int = 1, padding: PadType = '', act_layer: Type[nn.Module] = nn.ReLU, norm_layer: Type[nn.Module] = nn.BatchNorm2d, ): super(SeparableConv2d, self).__init__() self.kernel_size = kernel_size self.dilation = dilation # depthwise convolution self.conv_dw = create_conv2d( in_chs, in_chs, kernel_size, stride=stride, padding=padding, dilation=dilation, depthwise=True) self.bn_dw = norm_layer(in_chs) self.act_dw = act_layer(inplace=True) if act_layer is not None else nn.Identity() # pointwise convolution self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1) self.bn_pw = norm_layer(out_chs) self.act_pw = act_layer(inplace=True) if act_layer is not None else nn.Identity() def forward(self, x): x = self.conv_dw(x) x = self.bn_dw(x) x = self.act_dw(x) x = self.conv_pw(x) x = self.bn_pw(x) x = self.act_pw(x) return x class PreSeparableConv2d(nn.Module): def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: int = 1, padding: PadType = '', act_layer: Type[nn.Module] = nn.ReLU, norm_layer: Type[nn.Module] = nn.BatchNorm2d, first_act: bool = True, ): super(PreSeparableConv2d, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) self.kernel_size = kernel_size self.dilation = dilation self.norm = norm_act_layer(in_chs, inplace=True) if first_act else nn.Identity() # depthwise convolution self.conv_dw = create_conv2d( in_chs, in_chs, kernel_size, stride=stride, padding=padding, dilation=dilation, depthwise=True) # pointwise convolution self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1) def forward(self, x): x = self.norm(x) x = self.conv_dw(x) x = self.conv_pw(x) return x class XceptionModule(nn.Module): def __init__( self, in_chs: int, out_chs: int, stride: int = 1, dilation: int = 1, pad_type: PadType = '', start_with_relu: bool = True, no_skip: bool = False, act_layer: Type[nn.Module] = nn.ReLU, norm_layer: Optional[Type[nn.Module]] = None, drop_path: Optional[nn.Module] = None ): super(XceptionModule, self).__init__() out_chs = to_3tuple(out_chs) self.in_channels = in_chs self.out_channels = out_chs[-1] self.no_skip = no_skip if not no_skip and (self.out_channels != self.in_channels or stride != 1): self.shortcut = ConvNormAct( in_chs, self.out_channels, 1, stride=stride, norm_layer=norm_layer, apply_act=False) else: self.shortcut = None separable_act_layer = None if start_with_relu else act_layer self.stack = nn.Sequential() for i in range(3): if start_with_relu: self.stack.add_module(f'act{i + 1}', act_layer(inplace=i > 0)) self.stack.add_module(f'conv{i + 1}', SeparableConv2d( in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type, act_layer=separable_act_layer, norm_layer=norm_layer)) in_chs = out_chs[i] self.drop_path = drop_path def forward(self, x): skip = x x = self.stack(x) if self.shortcut is not None: skip = self.shortcut(skip) if not self.no_skip: if self.drop_path is not None: x = self.drop_path(x) x = x + skip return x class PreXceptionModule(nn.Module): def __init__( self, in_chs: int, out_chs: int, stride: int = 1, dilation: int = 1, pad_type: PadType = '', no_skip: bool = False, act_layer: Type[nn.Module] = nn.ReLU, norm_layer: Optional[Type[nn.Module]] = None, drop_path: Optional[nn.Module] = None ): super(PreXceptionModule, self).__init__() out_chs = to_3tuple(out_chs) self.in_channels = in_chs self.out_channels = out_chs[-1] self.no_skip = no_skip if not no_skip and (self.out_channels != self.in_channels or stride != 1): self.shortcut = create_conv2d(in_chs, self.out_channels, 1, stride=stride) else: self.shortcut = nn.Identity() self.norm = get_norm_act_layer(norm_layer, act_layer=act_layer)(in_chs, inplace=True) self.stack = nn.Sequential() for i in range(3): self.stack.add_module(f'conv{i + 1}', PreSeparableConv2d( in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type, act_layer=act_layer, norm_layer=norm_layer, first_act=i > 0, )) in_chs = out_chs[i] self.drop_path = drop_path def forward(self, x): x = self.norm(x) skip = x x = self.stack(x) if not self.no_skip: if self.drop_path is not None: x = self.drop_path(x) x = x + self.shortcut(skip) return x class XceptionAligned(nn.Module): """Modified Aligned Xception """ def __init__( self, block_cfg: List[Dict], num_classes: int = 1000, in_chans: int = 3, output_stride: int = 32, preact: bool = False, act_layer: Type[nn.Module] = nn.ReLU, norm_layer: Type[nn.Module] = nn.BatchNorm2d, drop_rate: float = 0., drop_path_rate: float = 0., global_pool: str = 'avg', ): super(XceptionAligned, self).__init__() assert output_stride in (8, 16, 32) self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False layer_args = dict(act_layer=act_layer, norm_layer=norm_layer) self.stem = nn.Sequential(*[ ConvNormAct(in_chans, 32, kernel_size=3, stride=2, **layer_args), create_conv2d(32, 64, kernel_size=3, stride=1) if preact else ConvNormAct(32, 64, kernel_size=3, stride=1, **layer_args) ]) curr_dilation = 1 curr_stride = 2 self.feature_info = [] self.blocks = nn.Sequential() module_fn = PreXceptionModule if preact else XceptionModule net_num_blocks = len(block_cfg) net_block_idx = 0 for i, b in enumerate(block_cfg): block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) # stochastic depth linear decay rule b['drop_path'] = DropPath(block_dpr) if block_dpr > 0. else None b['dilation'] = curr_dilation if b['stride'] > 1: name = f'blocks.{i}.stack.conv2' if preact else f'blocks.{i}.stack.act3' self.feature_info += [dict(num_chs=to_3tuple(b['out_chs'])[-2], reduction=curr_stride, module=name)] next_stride = curr_stride * b['stride'] if next_stride > output_stride: curr_dilation *= b['stride'] b['stride'] = 1 else: curr_stride = next_stride self.blocks.add_module(str(i), module_fn(**b, **layer_args)) self.num_features = self.blocks[-1].out_channels net_block_idx += 1 self.feature_info += [dict( num_chs=self.num_features, reduction=curr_stride, module='blocks.' + str(len(self.blocks) - 1))] self.act = act_layer(inplace=True) if preact else nn.Identity() self.head_hidden_size = self.num_features self.head = ClassifierHead( in_features=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate, ) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=r'^blocks\.(\d+)', ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, pool_type=global_pool) def forward_features(self, x): x = self.stem(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) x = self.act(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _xception(variant, pretrained=False, **kwargs): return build_model_with_cfg( XceptionAligned, variant, pretrained, feature_cfg=dict(flatten_sequential=True, feature_cls='hook'), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (10, 10), 'crop_pct': 0.903, 'interpolation': 'bicubic', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'stem.0.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ 'xception65.ra3_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.94, ), 'xception41.tf_in1k': _cfg(hf_hub_id='timm/'), 'xception65.tf_in1k': _cfg(hf_hub_id='timm/'), 'xception71.tf_in1k': _cfg(hf_hub_id='timm/'), 'xception41p.ra3_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.94, ), 'xception65p.ra3_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.94, ), }) @register_model def xception41(pretrained=False, **kwargs) -> XceptionAligned: """ Modified Aligned Xception-41 """ block_cfg = [ # entry flow dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), # middle flow *([dict(in_chs=728, out_chs=728, stride=1)] * 8), # exit flow dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False), ] model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) return _xception('xception41', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def xception65(pretrained=False, **kwargs) -> XceptionAligned: """ Modified Aligned Xception-65 """ block_cfg = [ # entry flow dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), # middle flow *([dict(in_chs=728, out_chs=728, stride=1)] * 16), # exit flow dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False), ] model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) return _xception('xception65', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def xception71(pretrained=False, **kwargs) -> XceptionAligned: """ Modified Aligned Xception-71 """ block_cfg = [ # entry flow dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=1), dict(in_chs=256, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=1), dict(in_chs=728, out_chs=728, stride=2), # middle flow *([dict(in_chs=728, out_chs=728, stride=1)] * 16), # exit flow dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False), ] model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) return _xception('xception71', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def xception41p(pretrained=False, **kwargs) -> XceptionAligned: """ Modified Aligned Xception-41 w/ Pre-Act """ block_cfg = [ # entry flow dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), # middle flow *([dict(in_chs=728, out_chs=728, stride=1)] * 8), # exit flow dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), no_skip=True, stride=1), ] model_args = dict(block_cfg=block_cfg, preact=True, norm_layer=nn.BatchNorm2d) return _xception('xception41p', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def xception65p(pretrained=False, **kwargs) -> XceptionAligned: """ Modified Aligned Xception-65 w/ Pre-Act """ block_cfg = [ # entry flow dict(in_chs=64, out_chs=128, stride=2), dict(in_chs=128, out_chs=256, stride=2), dict(in_chs=256, out_chs=728, stride=2), # middle flow *([dict(in_chs=728, out_chs=728, stride=1)] * 16), # exit flow dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True), ] model_args = dict( block_cfg=block_cfg, preact=True, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) return _xception('xception65p', pretrained=pretrained, **dict(model_args, **kwargs))