"""SHViT SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design Code: https://github.com/ysj9909/SHViT Paper: https://arxiv.org/abs/2401.16456 @inproceedings{yun2024shvit, author={Yun, Seokju and Ro, Youngmin}, title={SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, pages={5756--5767}, year={2024} } """ import re from typing import Any, Dict, List, Optional, Set, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import GroupNorm1, SqueezeExcite, SelectAdaptivePool2d, LayerType, trunc_normal_ from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['SHViT'] class Residule(nn.Module): def __init__(self, m: nn.Module): super().__init__() self.m = m def forward(self, x: torch.Tensor) -> torch.Tensor: return x + self.m(x) @torch.no_grad() def fuse(self) -> nn.Module: if isinstance(self.m, Conv2d_BN): m = self.m.fuse() assert(m.groups == m.in_channels) identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1) identity = F.pad(identity, [1,1,1,1]) m.weight += identity.to(m.weight.device) return m else: return self class Conv2d_BN(nn.Sequential): def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 1, stride: int = 1, padding: int = 0, bn_weight_init: int = 1, **kwargs, ): super().__init__() self.add_module('c', nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding, bias=False, **kwargs)) self.add_module('bn', nn.BatchNorm2d(out_channels)) nn.init.constant_(self.bn.weight, bn_weight_init) nn.init.constant_(self.bn.bias, 0) @torch.no_grad() def fuse(self) -> nn.Conv2d: c, bn = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 m = nn.Conv2d( in_channels=w.size(1) * self.c.groups, out_channels=w.size(0), kernel_size=w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups, device=c.weight.device, dtype=c.weight.dtype, ) m.weight.data.copy_(w) m.bias.data.copy_(b) return m class BN_Linear(nn.Sequential): def __init__( self, in_features: int, out_features: int, bias: bool = True, std: float = 0.02, ): super().__init__() self.add_module('bn', nn.BatchNorm1d(in_features)) self.add_module('l', nn.Linear(in_features, out_features, bias=bias)) trunc_normal_(self.l.weight, std=std) if bias: nn.init.constant_(self.l.bias, 0) @torch.no_grad() def fuse(self) -> nn.Linear: bn, l = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[None, :] if l.bias is None: b = b @ self.l.weight.T else: b = (l.weight @ b[:, None]).view(-1) + self.l.bias m = nn.Linear(w.size(1), w.size(0), device=l.weight.device, dtype=l.weight.dtype) m.weight.data.copy_(w) m.bias.data.copy_(b) return m class PatchMerging(nn.Module): def __init__(self, dim: int, out_dim: int, act_layer: LayerType = nn.ReLU): super().__init__() hid_dim = int(dim * 4) self.conv1 = Conv2d_BN(dim, hid_dim) self.act1 = act_layer() self.conv2 = Conv2d_BN(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim) self.act2 = act_layer() self.se = SqueezeExcite(hid_dim, 0.25) self.conv3 = Conv2d_BN(hid_dim, out_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) x = self.se(x) x = self.conv3(x) return x class FFN(nn.Module): def __init__(self, dim: int, embed_dim: int, act_layer: LayerType = nn.ReLU): super().__init__() self.pw1 = Conv2d_BN(dim, embed_dim) self.act = act_layer() self.pw2 = Conv2d_BN(embed_dim, dim, bn_weight_init=0) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.pw1(x) x = self.act(x) x = self.pw2(x) return x class SHSA(nn.Module): """Single-Head Self-Attention""" def __init__( self, dim: int, qk_dim: int, pdim: int, norm_layer: LayerType = GroupNorm1, act_layer: LayerType = nn.ReLU, ): super().__init__() self.scale = qk_dim ** -0.5 self.qk_dim = qk_dim self.dim = dim self.pdim = pdim self.pre_norm = norm_layer(pdim) self.qkv = Conv2d_BN(pdim, qk_dim * 2 + pdim) self.proj = nn.Sequential(act_layer(), Conv2d_BN(dim, dim, bn_weight_init=0)) def forward(self, x: torch.Tensor) -> torch.Tensor: B, _, H, W = x.shape x1, x2 = torch.split(x, [self.pdim, self.dim - self.pdim], dim = 1) x1 = self.pre_norm(x1) qkv = self.qkv(x1) q, k, v = torch.split(qkv, [self.qk_dim, self.qk_dim, self.pdim], dim=1) q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) attn = (q.transpose(-2, -1) @ k) * self.scale attn = attn.softmax(dim=-1) x1 = (v @ attn.transpose(-2, -1)).reshape(B, self.pdim, H, W) x = self.proj(torch.cat([x1, x2], dim = 1)) return x class BasicBlock(nn.Module): def __init__( self, dim: int, qk_dim: int, pdim: int, type: str, norm_layer: LayerType = GroupNorm1, act_layer: LayerType = nn.ReLU, ): super().__init__() self.conv = Residule(Conv2d_BN(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0)) if type == "s": self.mixer = Residule(SHSA(dim, qk_dim, pdim, norm_layer, act_layer)) else: self.mixer = nn.Identity() self.ffn = Residule(FFN(dim, int(dim * 2))) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv(x) x = self.mixer(x) x = self.ffn(x) return x class StageBlock(nn.Module): def __init__( self, prev_dim: int, dim: int, qk_dim: int, pdim: int, type: str, depth: int, norm_layer: LayerType = GroupNorm1, act_layer: LayerType = nn.ReLU, ): super().__init__() self.grad_checkpointing = False self.downsample = nn.Sequential( Residule(Conv2d_BN(prev_dim, prev_dim, 3, 1, 1, groups=prev_dim)), Residule(FFN(prev_dim, int(prev_dim * 2), act_layer)), PatchMerging(prev_dim, dim, act_layer), Residule(Conv2d_BN(dim, dim, 3, 1, 1, groups=dim)), Residule(FFN(dim, int(dim * 2), act_layer)), ) if prev_dim != dim else nn.Identity() self.blocks = nn.Sequential(*[ BasicBlock(dim, qk_dim, pdim, type, norm_layer, act_layer) for _ in range(depth) ]) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x class SHViT(nn.Module): def __init__( self, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: Tuple[int, int, int] = (128, 256, 384), partial_dim: Tuple[int, int, int] = (32, 64, 96), qk_dim: Tuple[int, int, int] = (16, 16, 16), depth: Tuple[int, int, int] = (1, 2, 3), types: Tuple[str, str, str] = ("s", "s", "s"), drop_rate: float = 0., norm_layer: LayerType = GroupNorm1, act_layer: LayerType = nn.ReLU, ): super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate self.feature_info = [] # Patch embedding stem_chs = embed_dim[0] self.patch_embed = nn.Sequential( Conv2d_BN(in_chans, stem_chs // 8, 3, 2, 1), act_layer(), Conv2d_BN(stem_chs // 8, stem_chs // 4, 3, 2, 1), act_layer(), Conv2d_BN(stem_chs // 4, stem_chs // 2, 3, 2, 1), act_layer(), Conv2d_BN(stem_chs // 2, stem_chs, 3, 2, 1) ) # Build SHViT blocks stages = [] prev_chs = stem_chs for i in range(len(embed_dim)): stages.append(StageBlock( prev_dim=prev_chs, dim=embed_dim[i], qk_dim=qk_dim[i], pdim=partial_dim[i], type=types[i], depth=depth[i], norm_layer=norm_layer, act_layer=act_layer, )) prev_chs = embed_dim[i] self.feature_info.append(dict(num_chs=prev_chs, reduction=2**(i+4), module=f'stages.{i}')) self.stages = nn.Sequential(*stages) # Classifier head self.num_features = self.head_hidden_size = embed_dim[-1] self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.head = BN_Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def no_weight_decay(self) -> Set: return set() @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict[str, Any]: matcher = dict( stem=r'^patch_embed', # stem and embed blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+).downsample', (0,)), (r'^stages\.(\d+)\.blocks\.(\d+)', None), ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.l def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.head = BN_Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages), indices) # forward pass x = self.patch_embed(x) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.stages else: stages = self.stages[:max_index + 1] for feat_idx, stage in enumerate(stages): x = stage(x) if feat_idx in take_indices: intermediates.append(x) if intermediates_only: return intermediates return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages), indices) self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.patch_embed(x) x = self.stages(x) return x def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: x = self.global_pool(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return x if pre_logits else self.head(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) x = self.forward_head(x) return x @torch.no_grad() def fuse(self): def fuse_children(net): for child_name, child in net.named_children(): if hasattr(child, 'fuse'): fused = child.fuse() setattr(net, child_name, fused) fuse_children(fused) else: fuse_children(child) fuse_children(self) def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: nn.Module) -> Dict[str, torch.Tensor]: if 'model' in state_dict: state_dict = state_dict['model'] out_dict = {} replace_rules = [ (re.compile(r'^blocks1\.'), 'stages.0.blocks.'), (re.compile(r'^blocks2\.'), 'stages.1.blocks.'), (re.compile(r'^blocks3\.'), 'stages.2.blocks.'), ] downsample_mapping = {} for i in range(1, 3): downsample_mapping[f'^stages\\.{i}\\.blocks\\.0\\.0\\.'] = f'stages.{i}.downsample.0.' downsample_mapping[f'^stages\\.{i}\\.blocks\\.0\\.1\\.'] = f'stages.{i}.downsample.1.' downsample_mapping[f'^stages\\.{i}\\.blocks\\.1\\.'] = f'stages.{i}.downsample.2.' downsample_mapping[f'^stages\\.{i}\\.blocks\\.2\\.0\\.'] = f'stages.{i}.downsample.3.' downsample_mapping[f'^stages\\.{i}\\.blocks\\.2\\.1\\.'] = f'stages.{i}.downsample.4.' for j in range(3, 10): downsample_mapping[f'^stages\\.{i}\\.blocks\\.{j}\\.'] = f'stages.{i}.blocks.{j - 3}.' downsample_patterns = [ (re.compile(pattern), replacement) for pattern, replacement in downsample_mapping.items()] for k, v in state_dict.items(): for pattern, replacement in replace_rules: k = pattern.sub(replacement, k) for pattern, replacement in downsample_patterns: k = pattern.sub(replacement, k) out_dict[k] = v return out_dict def _cfg(url: str = '', **kwargs: Any) -> Dict[str, Any]: return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.0.c', 'classifier': 'head.l', 'paper_ids': 'arXiv:2401.16456', 'paper_name': 'SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design', 'origin_url': 'https://github.com/ysj9909/SHViT', **kwargs } default_cfgs = generate_default_cfgs({ 'shvit_s1.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ysj9909/SHViT/releases/download/v1.0/shvit_s1.pth', ), 'shvit_s2.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ysj9909/SHViT/releases/download/v1.0/shvit_s2.pth', ), 'shvit_s3.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ysj9909/SHViT/releases/download/v1.0/shvit_s3.pth', ), 'shvit_s4.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ysj9909/SHViT/releases/download/v1.0/shvit_s4.pth', input_size=(3, 256, 256), ), }) def _create_shvit(variant: str, pretrained: bool = False, **kwargs: Any) -> SHViT: model = build_model_with_cfg( SHViT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2), flatten_sequential=True), **kwargs, ) return model @register_model def shvit_s1(pretrained: bool = False, **kwargs: Any) -> SHViT: model_args = dict( embed_dim=(128, 224, 320), depth=(2, 4, 5), partial_dim=(32, 48, 68), types=("i", "s", "s")) return _create_shvit('shvit_s1', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def shvit_s2(pretrained: bool = False, **kwargs: Any) -> SHViT: model_args = dict( embed_dim=(128, 308, 448), depth=(2, 4, 5), partial_dim=(32, 66, 96), types=("i", "s", "s")) return _create_shvit('shvit_s2', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def shvit_s3(pretrained: bool = False, **kwargs: Any) -> SHViT: model_args = dict( embed_dim=(192, 352, 448), depth=(3, 5, 5), partial_dim=(48, 75, 96), types=("i", "s", "s")) return _create_shvit('shvit_s3', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def shvit_s4(pretrained: bool = False, **kwargs: Any) -> SHViT: model_args = dict( embed_dim=(224, 336, 448), depth=(4, 7, 6), partial_dim=(48, 72, 96), types=("i", "s", "s")) return _create_shvit('shvit_s4', pretrained=pretrained, **dict(model_args, **kwargs))