""" EfficientViT (by MIT Song Han's Lab) Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition` - https://arxiv.org/abs/2205.14756 Adapted from official impl at https://github.com/mit-han-lab/efficientvit """ __all__ = ['EfficientVit'] from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, create_conv2d from ._builder import build_model_with_cfg from ._features_fx import register_notrace_module from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs def val2list(x: list or tuple or any, repeat_time=1): if isinstance(x, (list, tuple)): return list(x) return [x for _ in range(repeat_time)] def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1): # repeat elements if necessary x = val2list(x) if len(x) > 0: x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] return tuple(x) def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]: if isinstance(kernel_size, tuple): return tuple([get_same_padding(ks) for ks in kernel_size]) else: assert kernel_size % 2 > 0, "kernel size should be odd number" return kernel_size // 2 class ConvNormAct(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size=3, stride=1, dilation=1, groups=1, bias=False, dropout=0., norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, ): super(ConvNormAct, self).__init__() self.dropout = nn.Dropout(dropout, inplace=False) self.conv = create_conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=groups, bias=bias, ) self.norm = norm_layer(num_features=out_channels) if norm_layer else nn.Identity() self.act = act_layer(inplace=True) if act_layer else nn.Identity() def forward(self, x): x = self.dropout(x) x = self.conv(x) x = self.norm(x) x = self.act(x) return x class DSConv(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size=3, stride=1, use_bias=False, norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), act_layer=(nn.ReLU6, None), ): super(DSConv, self).__init__() use_bias = val2tuple(use_bias, 2) norm_layer = val2tuple(norm_layer, 2) act_layer = val2tuple(act_layer, 2) self.depth_conv = ConvNormAct( in_channels, in_channels, kernel_size, stride, groups=in_channels, norm_layer=norm_layer[0], act_layer=act_layer[0], bias=use_bias[0], ) self.point_conv = ConvNormAct( in_channels, out_channels, 1, norm_layer=norm_layer[1], act_layer=act_layer[1], bias=use_bias[1], ) def forward(self, x): x = self.depth_conv(x) x = self.point_conv(x) return x class MBConv(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size=3, stride=1, mid_channels=None, expand_ratio=6, use_bias=False, norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d, nn.BatchNorm2d), act_layer=(nn.ReLU6, nn.ReLU6, None), ): super(MBConv, self).__init__() use_bias = val2tuple(use_bias, 3) norm_layer = val2tuple(norm_layer, 3) act_layer = val2tuple(act_layer, 3) mid_channels = mid_channels or round(in_channels * expand_ratio) self.inverted_conv = ConvNormAct( in_channels, mid_channels, 1, stride=1, norm_layer=norm_layer[0], act_layer=act_layer[0], bias=use_bias[0], ) self.depth_conv = ConvNormAct( mid_channels, mid_channels, kernel_size, stride=stride, groups=mid_channels, norm_layer=norm_layer[1], act_layer=act_layer[1], bias=use_bias[1], ) self.point_conv = ConvNormAct( mid_channels, out_channels, 1, norm_layer=norm_layer[2], act_layer=act_layer[2], bias=use_bias[2], ) def forward(self, x): x = self.inverted_conv(x) x = self.depth_conv(x) x = self.point_conv(x) return x class LiteMSA(nn.Module): """Lightweight multi-scale attention""" def __init__( self, in_channels: int, out_channels: int, heads: int or None = None, heads_ratio: float = 1.0, dim=8, use_bias=False, norm_layer=(None, nn.BatchNorm2d), act_layer=(None, None), kernel_func=nn.ReLU, scales=(5,), eps=1e-5, ): super(LiteMSA, self).__init__() self.eps = eps heads = heads or int(in_channels // dim * heads_ratio) total_dim = heads * dim use_bias = val2tuple(use_bias, 2) norm_layer = val2tuple(norm_layer, 2) act_layer = val2tuple(act_layer, 2) self.dim = dim self.qkv = ConvNormAct( in_channels, 3 * total_dim, 1, bias=use_bias[0], norm_layer=norm_layer[0], act_layer=act_layer[0], ) self.aggreg = nn.ModuleList([ nn.Sequential( nn.Conv2d( 3 * total_dim, 3 * total_dim, scale, padding=get_same_padding(scale), groups=3 * total_dim, bias=use_bias[0], ), nn.Conv2d(3 * total_dim, 3 * total_dim, 1, groups=3 * heads, bias=use_bias[0]), ) for scale in scales ]) self.kernel_func = kernel_func(inplace=False) self.proj = ConvNormAct( total_dim * (1 + len(scales)), out_channels, 1, bias=use_bias[1], norm_layer=norm_layer[1], act_layer=act_layer[1], ) def _attn(self, q, k, v): dtype = v.dtype q, k, v = q.float(), k.float(), v.float() kv = k.transpose(-1, -2) @ v out = q @ kv out = out[..., :-1] / (out[..., -1:] + self.eps) return out.to(dtype) def forward(self, x): B, _, H, W = x.shape # generate multi-scale q, k, v qkv = self.qkv(x) multi_scale_qkv = [qkv] for op in self.aggreg: multi_scale_qkv.append(op(qkv)) multi_scale_qkv = torch.cat(multi_scale_qkv, dim=1) multi_scale_qkv = multi_scale_qkv.reshape(B, -1, 3 * self.dim, H * W).transpose(-1, -2) q, k, v = multi_scale_qkv.chunk(3, dim=-1) # lightweight global attention q = self.kernel_func(q) k = self.kernel_func(k) v = F.pad(v, (0, 1), mode="constant", value=1.) if not torch.jit.is_scripting(): with torch.amp.autocast(device_type=v.device.type, enabled=False): out = self._attn(q, k, v) else: out = self._attn(q, k, v) # final projection out = out.transpose(-1, -2).reshape(B, -1, H, W) out = self.proj(out) return out register_notrace_module(LiteMSA) class EfficientVitBlock(nn.Module): def __init__( self, in_channels, heads_ratio=1.0, head_dim=32, expand_ratio=4, norm_layer=nn.BatchNorm2d, act_layer=nn.Hardswish, ): super(EfficientVitBlock, self).__init__() self.context_module = ResidualBlock( LiteMSA( in_channels=in_channels, out_channels=in_channels, heads_ratio=heads_ratio, dim=head_dim, norm_layer=(None, norm_layer), ), nn.Identity(), ) self.local_module = ResidualBlock( MBConv( in_channels=in_channels, out_channels=in_channels, expand_ratio=expand_ratio, use_bias=(True, True, False), norm_layer=(None, None, norm_layer), act_layer=(act_layer, act_layer, None), ), nn.Identity(), ) def forward(self, x): x = self.context_module(x) x = self.local_module(x) return x class ResidualBlock(nn.Module): def __init__( self, main: Optional[nn.Module], shortcut: Optional[nn.Module] = None, pre_norm: Optional[nn.Module] = None, ): super(ResidualBlock, self).__init__() self.pre_norm = pre_norm if pre_norm is not None else nn.Identity() self.main = main self.shortcut = shortcut def forward(self, x): res = self.main(self.pre_norm(x)) if self.shortcut is not None: res = res + self.shortcut(x) return res def build_local_block( in_channels: int, out_channels: int, stride: int, expand_ratio: float, norm_layer: str, act_layer: str, fewer_norm: bool = False, ): if expand_ratio == 1: block = DSConv( in_channels=in_channels, out_channels=out_channels, stride=stride, use_bias=(True, False) if fewer_norm else False, norm_layer=(None, norm_layer) if fewer_norm else norm_layer, act_layer=(act_layer, None), ) else: block = MBConv( in_channels=in_channels, out_channels=out_channels, stride=stride, expand_ratio=expand_ratio, use_bias=(True, True, False) if fewer_norm else False, norm_layer=(None, None, norm_layer) if fewer_norm else norm_layer, act_layer=(act_layer, act_layer, None), ) return block class Stem(nn.Sequential): def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer): super().__init__() self.stride = 2 self.add_module( 'in_conv', ConvNormAct( in_chs, out_chs, kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer, ) ) stem_block = 0 for _ in range(depth): self.add_module(f'res{stem_block}', ResidualBlock( build_local_block( in_channels=out_chs, out_channels=out_chs, stride=1, expand_ratio=1, norm_layer=norm_layer, act_layer=act_layer, ), nn.Identity(), )) stem_block += 1 class EfficientVitStage(nn.Module): def __init__( self, in_chs, out_chs, depth, norm_layer, act_layer, expand_ratio, head_dim, vit_stage=False, ): super(EfficientVitStage, self).__init__() blocks = [ResidualBlock( build_local_block( in_channels=in_chs, out_channels=out_chs, stride=2, expand_ratio=expand_ratio, norm_layer=norm_layer, act_layer=act_layer, fewer_norm=vit_stage, ), None, )] in_chs = out_chs if vit_stage: # for stage 3, 4 for _ in range(depth): blocks.append( EfficientVitBlock( in_channels=in_chs, head_dim=head_dim, expand_ratio=expand_ratio, norm_layer=norm_layer, act_layer=act_layer, ) ) else: # for stage 1, 2 for i in range(1, depth): blocks.append(ResidualBlock( build_local_block( in_channels=in_chs, out_channels=out_chs, stride=1, expand_ratio=expand_ratio, norm_layer=norm_layer, act_layer=act_layer ), nn.Identity(), )) self.blocks = nn.Sequential(*blocks) def forward(self, x): return self.blocks(x) class ClassifierHead(nn.Module): def __init__( self, in_channels, widths, n_classes=1000, dropout=0., norm_layer=nn.BatchNorm2d, act_layer=nn.Hardswish, global_pool='avg', ): super(ClassifierHead, self).__init__() self.in_conv = ConvNormAct(in_channels, widths[0], 1, norm_layer=norm_layer, act_layer=act_layer) self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True, input_fmt='NCHW') self.classifier = nn.Sequential( nn.Linear(widths[0], widths[1], bias=False), nn.LayerNorm(widths[1]), act_layer(inplace=True), nn.Dropout(dropout, inplace=False), nn.Linear(widths[1], n_classes, bias=True), ) def forward(self, x, pre_logits: bool = False): x = self.in_conv(x) x = self.global_pool(x) if pre_logits: return x x = self.classifier(x) return x class EfficientVit(nn.Module): def __init__( self, in_chans=3, widths=(), depths=(), head_dim=32, expand_ratio=4, norm_layer=nn.BatchNorm2d, act_layer=nn.Hardswish, global_pool='avg', head_widths=(), drop_rate=0.0, num_classes=1000, ): super(EfficientVit, self).__init__() self.grad_checkpointing = False self.global_pool = global_pool self.num_classes = num_classes # input stem self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer) stride = self.stem.stride # stages self.feature_info = [] stages = [] stage_idx = 0 in_channels = widths[0] for i, (w, d) in enumerate(zip(widths[1:], depths[1:])): stages.append(EfficientVitStage( in_channels, w, depth=d, norm_layer=norm_layer, act_layer=act_layer, expand_ratio=expand_ratio, head_dim=head_dim, vit_stage=i >= 2, )) stride *= 2 in_channels = w self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{stage_idx}')] stage_idx += 1 self.stages = nn.Sequential(*stages) self.num_features = in_channels self.head_widths = head_widths self.head_dropout = drop_rate if num_classes > 0: self.head = ClassifierHead( self.num_features, self.head_widths, n_classes=num_classes, dropout=self.head_dropout, global_pool=self.global_pool, ) else: if self.global_pool == 'avg': self.head = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) else: self.head = nn.Identity() @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', # stem and embed blocks=[(r'^stages\.(\d+)', None)] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.classifier[-1] def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool if num_classes > 0: self.head = ClassifierHead( self.num_features, self.head_widths, n_classes=num_classes, dropout=self.head_dropout, global_pool=self.global_pool, ) else: if self.global_pool == 'avg': self.head = SelectAdaptivePool2d(pool_type=self.global_pool, flatten=True) else: self.head = nn.Identity() def forward_features(self, x): x = self.stem(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x) else: x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.in_conv.conv', 'classifier': 'head.classifier.4', 'crop_pct': 0.95, 'input_size': (3, 224, 224), 'pool_size': (7, 7), **kwargs, } default_cfgs = generate_default_cfgs({ 'efficientvit_b0.r224_in1k': _cfg( hf_hub_id='timm/', ), 'efficientvit_b1.r224_in1k': _cfg( hf_hub_id='timm/', ), 'efficientvit_b1.r256_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, ), 'efficientvit_b1.r288_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, ), 'efficientvit_b2.r224_in1k': _cfg( hf_hub_id='timm/', ), 'efficientvit_b2.r256_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, ), 'efficientvit_b2.r288_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, ), 'efficientvit_b3.r224_in1k': _cfg( hf_hub_id='timm/', ), 'efficientvit_b3.r256_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, ), 'efficientvit_b3.r288_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, ), }) def _create_efficientvit(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) model = build_model_with_cfg( EfficientVit, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs ) return model @register_model def efficientvit_b0(pretrained=False, **kwargs): model_args = dict( widths=(8, 16, 32, 64, 128), depths=(1, 2, 2, 2, 2), head_dim=16, head_widths=(1024, 1280)) return _create_efficientvit('efficientvit_b0', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def efficientvit_b1(pretrained=False, **kwargs): model_args = dict( widths=(16, 32, 64, 128, 256), depths=(1, 2, 3, 3, 4), head_dim=16, head_widths=(1536, 1600)) return _create_efficientvit('efficientvit_b1', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def efficientvit_b2(pretrained=False, **kwargs): model_args = dict( widths=(24, 48, 96, 192, 384), depths=(1, 3, 4, 4, 6), head_dim=32, head_widths=(2304, 2560)) return _create_efficientvit('efficientvit_b2', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def efficientvit_b3(pretrained=False, **kwargs): model_args = dict( widths=(32, 64, 128, 256, 512), depths=(1, 4, 6, 6, 9), head_dim=32, head_widths=(2304, 2560)) return _create_efficientvit('efficientvit_b3', pretrained=pretrained, **dict(model_args, **kwargs))