# Changelog

### Aug 8, 2024
* Add RDNet ('DenseNets Reloaded', https://arxiv.org/abs/2403.19588), thanks [Donghyun Kim](https://github.com/dhkim0225)

### July 28, 2024
* Add `mobilenet_edgetpu_v2_m` weights w/ `ra4` mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.
* Release 1.0.8

### July 26, 2024
* More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01   |97.294|2.706   |32.59      |544     |
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228  |97.344|2.656   |32.59      |480     |
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36   |97.114|2.886   |32.59      |448     |
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686  |97.102|2.898   |32.59      |384     |
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k)     |83.824|16.176  |96.734|3.266   |32.59      |480     |
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k)             |83.244|16.756  |96.392|3.608   |32.59      |384     |
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01   |96.67 |3.33    |11.07      |320     |
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636  |96.256|3.744   |11.07      |256     |

* Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines)

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k)                       |79.364|20.636  |94.754|5.246   |5.29       |256     |
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k)                       |78.584|21.416  |94.338|5.662   |5.29       |224     |
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k)                     |76.596|23.404  |93.272|6.728   |5.28       |256     |
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k)                       |76.094|23.906  |93.004|6.996   |4.23       |256     |
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k)                     |75.662|24.338  |92.504|7.496   |5.28       |224     |
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k)                       |75.382|24.618  |92.312|7.688   |4.23       |224     |

* Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.
* Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints
* Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same.
* Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k

|model                       |top1  |top1_err|top5  |top5_err|param_count|img_size|crop_pct|
|----------------------------|------|--------|------|--------|-----------|--------|--------|
|test_efficientnet.r160_in1k |47.156|52.844  |71.726|28.274  |0.36       |192     |1.0     |
|test_byobnet.r160_in1k      |46.698|53.302  |71.674|28.326  |0.46       |192     |1.0     |
|test_efficientnet.r160_in1k |46.426|53.574  |70.928|29.072  |0.36       |160     |0.875   |
|test_byobnet.r160_in1k      |45.378|54.622  |70.572|29.428  |0.46       |160     |0.875   |
|test_vit.r160_in1k|42.0  |58.0    |68.664|31.336  |0.37       |192     |1.0     |
|test_vit.r160_in1k|40.822|59.178  |67.212|32.788  |0.37       |160     |0.875   |

* Fix vit reg token init, thanks [Promisery](https://github.com/Promisery)
* Other misc fixes

### June 24, 2024
* 3 more MobileNetV4 hyrid weights with different MQA weight init scheme

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |84.356|15.644  |96.892 |3.108  |37.76      |448     |
| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |83.990|16.010  |96.702 |3.298  |37.76      |384     |
| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k)       |83.394|16.606  |96.760|3.240   |11.07      |448     |
| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k)       |82.968|17.032  |96.474|3.526   |11.07      |384     |
| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k)       |82.492|17.508  |96.278|3.722   |11.07      |320     |
| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k)       |81.446|18.554  |95.704|4.296   |11.07      |256     |
* florence2 weight loading in DaViT model

### June 12, 2024
* MobileNetV4 models and initial set of `timm` trained weights added:

| model                                                                                            |top1  |top1_err|top5  |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |84.266|15.734  |96.936 |3.064  |37.76      |448     |
| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |83.800|16.200  |96.770 |3.230  |37.76      |384     |
| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |83.392|16.608  |96.622 |3.378  |32.59      |448     |
| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |82.952|17.048  |96.266 |3.734  |32.59      |384     |
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326  |96.31 |3.69    |32.59      |320     |
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k)                   |81.862|18.138  |95.69 |4.31    |32.59      |256     |
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k)             |81.276|18.724  |95.742|4.258   |11.07      |256     |
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k)                 |80.858|19.142  |95.768|4.232   |9.72       |320     |
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k)             |80.442|19.558  |95.38 |4.62    |11.07      |224     |
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k)       |80.142|19.858  |95.298|4.702   |9.72       |256     |
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k)                 |79.928|20.072  |95.184|4.816   |9.72       |256     |
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k)                 |79.808|20.192  |95.186|4.814   |9.72       |256     |
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k)       |79.438|20.562  |94.932|5.068   |9.72       |224     |
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k)                 |79.094|20.906  |94.77 |5.23    |9.72       |224     |
| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k)                 |74.616|25.384  |92.072|7.928   |3.77       |256     |
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k)                 |74.292|25.708  |92.116|7.884   |3.77       |256     |
| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k)                 |73.756|26.244  |91.422|8.578   |3.77       |224     |
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k)                 |73.454|26.546  |91.34 |8.66    |3.77       |224     |

* Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support).
* ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support).
* OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d.

### May 14, 2024
* Support loading PaliGemma jax weights into SigLIP ViT models with average pooling.
* Add Hiera models from Meta (https://github.com/facebookresearch/hiera).
* Add `normalize=` flag for transorms, return non-normalized torch.Tensor with original dytpe (for `chug`)
* Version 1.0.3 release

### May 11, 2024
* `Searching for Better ViT Baselines (For the GPU Poor)` weights and vit variants released. Exploring model shapes between Tiny and Base.

| model | top1 | top5 | param_count | img_size |
| -------------------------------------------------- | ------ | ------ | ----------- | -------- |
| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 86.202 | 97.874 | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k)  | 85.418 | 97.48 | 60.4 | 256 |
| [vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k)  | 84.322 | 96.812 | 63.95 | 256 |
| [vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k)  | 83.906 | 96.684 | 60.23 | 256 |
| [vit_base_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_base_patch16_rope_reg1_gap_256.sbb_in1k)  | 83.866 | 96.67 | 86.43 | 256 |
| [vit_medium_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_rope_reg1_gap_256.sbb_in1k)  | 83.81 | 96.824 | 38.74 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in1k)  | 83.706 | 96.616 | 60.4 | 256 |
| [vit_betwixt_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg1_gap_256.sbb_in1k)  | 83.628 | 96.544 | 60.4 | 256 |
| [vit_medium_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg4_gap_256.sbb_in1k)  | 83.47 | 96.622 | 38.88 | 256 |
| [vit_medium_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg1_gap_256.sbb_in1k)  | 83.462 | 96.548 | 38.88 | 256 |
| [vit_little_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_little_patch16_reg4_gap_256.sbb_in1k)  | 82.514 | 96.262 | 22.52 | 256 |
| [vit_wee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_wee_patch16_reg1_gap_256.sbb_in1k)  | 80.256 | 95.360 | 13.42 | 256 |
| [vit_pwee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_pwee_patch16_reg1_gap_256.sbb_in1k)  | 80.072 | 95.136 | 15.25 | 256 |
| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k)  | N/A | N/A | 60.4 | 256 |

* AttentionExtract helper added to extract attention maps from `timm` models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949
* `forward_intermediates()` API refined and added to more models including some ConvNets that have other extraction methods.
* 1017 of 1047 model architectures support `features_only=True` feature extraction. Remaining 34 architectures can be supported but based on priority requests.
* Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used.

### April 11, 2024
* Prepping for a long overdue 1.0 release, things have been stable for a while now.
* Significant feature that's been missing for a while, `features_only=True` support for ViT models with flat hidden states or non-std module layouts (so far covering  `'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*'`)
* Above feature support achieved through a new `forward_intermediates()` API that can be used with a feature wrapping module or direclty.
```python
model = timm.create_model('vit_base_patch16_224')
final_feat, intermediates = model.forward_intermediates(input)
output = model.forward_head(final_feat)  # pooling + classifier head

print(final_feat.shape)
torch.Size([2, 197, 768])

for f in intermediates:
    print(f.shape)
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])

print(output.shape)
torch.Size([2, 1000])
```

```python
model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,))
output = model(torch.randn(2, 3, 512, 512))

for o in output:
    print(o.shape)
torch.Size([2, 768, 32, 32])
torch.Size([2, 768, 32, 32])
```
* TinyCLIP vision tower weights added, thx [Thien Tran](https://github.com/gau-nernst)

### Feb 19, 2024
* Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT
* HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by [SeeFun](https://github.com/seefun)
* Removed setup.py, moved to pyproject.toml based build supported by PDM
* Add updated model EMA impl using _for_each for less overhead
* Support device args in train script for non GPU devices
* Other misc fixes and small additions
* Min supported Python version increased to 3.8
* Release 0.9.16

### Jan 8, 2024
Datasets & transform refactoring
* HuggingFace streaming (iterable) dataset support (`--dataset hfids:org/dataset`)
* Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset
* Tested HF `datasets` and webdataset wrapper streaming from HF hub with recent `timm` ImageNet uploads to https://huggingface.co/timm
* Make input & target column/field keys consistent across datasets and pass via args
* Full monochrome support when using e:g: `--input-size 1 224 224` or `--in-chans 1`, sets PIL image conversion appropriately in dataset
* Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project
* Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args
* Allow train without validation set (`--val-split ''`) in train script
* Add `--bce-sum` (sum over class dim) and `--bce-pos-weight` (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding

### Nov 23, 2023
* Added EfficientViT-Large models, thanks [SeeFun](https://github.com/seefun)
* Fix Python 3.7 compat, will be dropping support for it soon
* Other misc fixes
* Release 0.9.12

### Nov 20, 2023
* Added significant flexibility for Hugging Face Hub based timm models via `model_args` config entry. `model_args` will be passed as kwargs through to models on creation.
  * See example at https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k/blob/main/config.json
  * Usage: https://github.com/huggingface/pytorch-image-models/discussions/2035
* Updated imagenet eval and test set csv files with latest models
* `vision_transformer.py` typing and doc cleanup by [Laureηt](https://github.com/Laurent2916)
* 0.9.11 release

### Nov 3, 2023
* [DFN (Data Filtering Networks)](https://huggingface.co/papers/2309.17425) and [MetaCLIP](https://huggingface.co/papers/2309.16671) ViT weights added
* DINOv2 'register' ViT model weights added (https://huggingface.co/papers/2309.16588, https://huggingface.co/papers/2304.07193)
* Add `quickgelu` ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient)
* Improved typing added to ResNet, MobileNet-v3 thanks to [Aryan](https://github.com/a-r-r-o-w)
* ImageNet-12k fine-tuned (from LAION-2B CLIP) `convnext_xxlarge`
* 0.9.9 release

### Oct 20, 2023
* [SigLIP](https://huggingface.co/papers/2303.15343) image tower weights supported in `vision_transformer.py`.
  * Great potential for fine-tune and downstream feature use.
* Experimental 'register' support in vit models as per [Vision Transformers Need Registers](https://huggingface.co/papers/2309.16588)
* Updated RepViT with new weight release. Thanks [wangao](https://github.com/jameslahm)
* Add patch resizing support (on pretrained weight load) to Swin models
* 0.9.8 release pending

### Sep 1, 2023
* TinyViT added by [SeeFun](https://github.com/seefun)
* Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10
* 0.9.7 release

### Aug 28, 2023
* Add dynamic img size support to models in `vision_transformer.py`, `vision_transformer_hybrid.py`, `deit.py`, and `eva.py` w/o breaking backward compat.
  * Add `dynamic_img_size=True` to args at model creation time to allow changing the grid size (interpolate abs and/or ROPE pos embed each forward pass).
  * Add `dynamic_img_pad=True` to allow image sizes that aren't divisible by patch size (pad bottom right to patch size each forward pass).
  * Enabling either dynamic mode will break FX tracing unless PatchEmbed module added as leaf.
  * Existing method of resizing position embedding by passing different `img_size` (interpolate pretrained embed weights once) on creation still works.
  * Existing method of changing `patch_size` (resize pretrained patch_embed weights once) on creation still works.
  * Example validation cmd `python validate.py --data-dir /imagenet --model vit_base_patch16_224 --amp --amp-dtype bfloat16 --img-size 255 --crop-pct 1.0 --model-kwargs dynamic_img_size=True dyamic_img_pad=True`

### Aug 25, 2023
* Many new models since last release
  * FastViT - https://arxiv.org/abs/2303.14189
  * MobileOne - https://arxiv.org/abs/2206.04040
  * InceptionNeXt - https://arxiv.org/abs/2303.16900
  * RepGhostNet - https://arxiv.org/abs/2211.06088 (thanks https://github.com/ChengpengChen)
  * GhostNetV2 - https://arxiv.org/abs/2211.12905 (thanks https://github.com/yehuitang)
  * EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 (thanks https://github.com/seefun)
  * EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 (thanks https://github.com/seefun)
* Add `--reparam` arg to `benchmark.py`, `onnx_export.py`, and `validate.py` to trigger layer reparameterization / fusion for models with any one of `reparameterize()`, `switch_to_deploy()` or `fuse()`
  * Including FastViT, MobileOne, RepGhostNet, EfficientViT (MSRA), RepViT, RepVGG, and LeViT
* Preparing 0.9.6 'back to school' release

### Aug 11, 2023
* Swin, MaxViT, CoAtNet, and BEiT models support resizing of image/window size on creation with adaptation of pretrained weights
* Example validation cmd to test w/ non-square resize `python validate.py --data-dir /imagenet --model swin_base_patch4_window7_224.ms_in22k_ft_in1k --amp --amp-dtype bfloat16 --input-size 3 256 320 --model-kwargs window_size=8,10 img_size=256,320`

### Aug 3, 2023
* Add GluonCV weights for HRNet w18_small and w18_small_v2. Converted by [SeeFun](https://github.com/seefun)
* Fix `selecsls*` model naming regression
* Patch and position embedding for ViT/EVA works for bfloat16/float16 weights on load (or activations for on-the-fly resize)
* v0.9.5 release prep

### July 27, 2023
* Added timm trained `seresnextaa201d_32x8d.sw_in12k_ft_in1k_384` weights (and `.sw_in12k` pretrain) with 87.3% top-1 on ImageNet-1k, best ImageNet ResNet family model I'm aware of.
* RepViT model and weights (https://arxiv.org/abs/2307.09283) added by [wangao](https://github.com/jameslahm)
* I-JEPA ViT feature weights (no classifier) added by [SeeFun](https://github.com/seefun)
* SAM-ViT (segment anything) feature weights (no classifier) added by [SeeFun](https://github.com/seefun)
* Add support for alternative feat extraction methods and -ve indices to EfficientNet
* Add NAdamW optimizer
* Misc fixes

### May 11, 2023
* `timm` 0.9 released, transition from 0.8.xdev releases

### May 10, 2023
* Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in `timm`
* DINOv2 vit feature backbone weights added thanks to [Leng Yue](https://github.com/leng-yue)
* FB MAE vit feature backbone weights added
* OpenCLIP DataComp-XL L/14 feat backbone weights added
* MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by [Fredo Guan](https://github.com/fffffgggg54)
* Experimental `get_intermediate_layers` function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome.
* Model creation throws error if `pretrained=True` and no weights exist (instead of continuing with random initialization)
* Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers
* bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use `bnb` prefix, ie `bnbadam8bit`
* Misc cleanup and fixes
* Final testing before switching to a 0.9 and bringing `timm` out of pre-release state

### April 27, 2023
* 97% of `timm` models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs
* Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes.

### April 21, 2023
* Gradient accumulation support added to train script and tested (`--grad-accum-steps`), thanks [Taeksang Kim](https://github.com/voidbag)
* More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned)
* Added `--head-init-scale` and `--head-init-bias` to train.py to scale classiifer head and set fixed bias for fine-tune
* Remove all InplaceABN (`inplace_abn`) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly). 

### April 12, 2023
* Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch.
* Refactor dropout args for vit and vit-like models, separate drop_rate into `drop_rate` (classifier dropout), `proj_drop_rate` (block mlp / out projections), `pos_drop_rate` (position embedding drop), `attn_drop_rate` (attention dropout). Also add patch dropout (FLIP) to vit and eva models.
* fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable
* Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed.

### April 5, 2023
* ALL ResNet models pushed to Hugging Face Hub with multi-weight support
  * All past `timm` trained weights added with recipe based tags to differentiate
  * All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available
  * Add torchvision v2 recipe weights to existing torchvision originals
  * See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison
* New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models
  * `resnetaa50d.sw_in12k_ft_in1k` - 81.7 @ 224, 82.6 @ 288
  * `resnetaa101d.sw_in12k_ft_in1k` - 83.5 @ 224, 84.1 @ 288
  * `seresnextaa101d_32x8d.sw_in12k_ft_in1k` - 86.0 @ 224, 86.5 @ 288 
  * `seresnextaa101d_32x8d.sw_in12k_ft_in1k_288` - 86.5 @ 288, 86.7 @ 320

### March 31, 2023
* Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models.

| model                                                                                                                |top1  |top5  |img_size|param_count|gmacs |macts |
|----------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------|
| [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256     |846.47     |198.09|124.45|
| convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384                                                               |88.312|98.578|384     |200.13     |101.11|126.74|
| convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320                                                               |87.968|98.47 |320     |200.13     |70.21 |88.02 |
| convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384                                                                  |87.138|98.212|384     |88.59      |45.21 |84.49 |
| convnext_base.clip_laion2b_augreg_ft_in12k_in1k                                                                      |86.344|97.97 |256     |88.59      |20.09 |37.55 |

* Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks.

| model                                              |top1  |top5  |param_count|img_size|
|----------------------------------------------------|------|------|-----------|--------|
| [eva02_large_patch14_448.mim_m38m_ft_in22k_in1k](https://huggingface.co/timm/eva02_large_patch14_448.mim_m38m_ft_in1k) |90.054|99.042|305.08     |448     |
| eva02_large_patch14_448.mim_in22k_ft_in22k_in1k    |89.946|99.01 |305.08     |448     |
| eva_giant_patch14_560.m30m_ft_in22k_in1k           |89.792|98.992|1014.45    |560     |
| eva02_large_patch14_448.mim_in22k_ft_in1k          |89.626|98.954|305.08     |448     |
| eva02_large_patch14_448.mim_m38m_ft_in1k           |89.57 |98.918|305.08     |448     |
| eva_giant_patch14_336.m30m_ft_in22k_in1k           |89.56 |98.956|1013.01    |336     |
| eva_giant_patch14_336.clip_ft_in1k                 |89.466|98.82 |1013.01    |336     |
| eva_large_patch14_336.in22k_ft_in22k_in1k          |89.214|98.854|304.53     |336     |
| eva_giant_patch14_224.clip_ft_in1k                 |88.882|98.678|1012.56    |224     |
| eva02_base_patch14_448.mim_in22k_ft_in22k_in1k     |88.692|98.722|87.12      |448     |
| eva_large_patch14_336.in22k_ft_in1k                |88.652|98.722|304.53     |336     |
| eva_large_patch14_196.in22k_ft_in22k_in1k          |88.592|98.656|304.14     |196     |
| eva02_base_patch14_448.mim_in22k_ft_in1k           |88.23 |98.564|87.12      |448     |
| eva_large_patch14_196.in22k_ft_in1k                |87.934|98.504|304.14     |196     |
| eva02_small_patch14_336.mim_in22k_ft_in1k          |85.74 |97.614|22.13      |336     |
| eva02_tiny_patch14_336.mim_in22k_ft_in1k           |80.658|95.524|5.76       |336     |

* Multi-weight and HF hub for DeiT and MLP-Mixer based models

### March 22, 2023
* More weights pushed to HF hub along with multi-weight support, including: `regnet.py`, `rexnet.py`, `byobnet.py`, `resnetv2.py`, `swin_transformer.py`, `swin_transformer_v2.py`, `swin_transformer_v2_cr.py`
* Swin Transformer models support feature extraction (NCHW feat maps for `swinv2_cr_*`, and NHWC for all others) and spatial embedding outputs.
* FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint
* RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful.
* More ImageNet-12k pretrained and 1k fine-tuned `timm` weights:
  * `rexnetr_200.sw_in12k_ft_in1k` - 82.6 @ 224, 83.2 @ 288
  * `rexnetr_300.sw_in12k_ft_in1k` - 84.0 @ 224, 84.5 @ 288
  * `regnety_120.sw_in12k_ft_in1k` - 85.0 @ 224, 85.4 @ 288
  * `regnety_160.lion_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288
  * `regnety_160.sw_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288  (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away)
* Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added...
* Minor bug fixes and improvements.

### Feb 26, 2023
* Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see [model card](https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup)
* Update `convnext_xxlarge` default LayerNorm eps to 1e-5 (for CLIP weights, improved stability)
* 0.8.15dev0

### Feb 20, 2023
* Add 320x320 `convnext_large_mlp.clip_laion2b_ft_320` and `convnext_lage_mlp.clip_laion2b_ft_soup_320` CLIP image tower weights for features & fine-tune
* 0.8.13dev0 pypi release for latest changes w/ move to huggingface org

### Feb 16, 2023
* `safetensor` checkpoint support added
* Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block
* Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to `vit_*`, `vit_relpos*`, `coatnet` / `maxxvit` (to start)
* Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675)
* gradient checkpointing works with `features_only=True`

### Feb 7, 2023
* New inference benchmark numbers added in [results](results/) folder.
* Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes
  * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256
  * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384
  * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256
  * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384` - 87.9% @ 384x384
* Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54).
* Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT
* Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub.
  * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`.
  * Minor updates to EfficientFormer.
  * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required.
* Move ImageNet meta-data (synsets, indices) from `/results` to [`timm/data/_info`](timm/data/_info/).
* Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm`
  * Update `inference.py` to use, try: `python inference.py --data-dir /folder/to/images --model convnext_small.in12k --label-type detail --topk 5`
* Ready for 0.8.10 pypi pre-release (final testing).

### Jan 20, 2023
* Add two convnext 12k -> 1k fine-tunes at 384x384
  * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384
  * `convnext_small.in12k_ft_in1k_384` - 86.2 @ 384

* Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for `rw` base MaxViT and CoAtNet 1/2 models

|model                                                                                                                   |top1 |top5 |samples / sec  |Params (M)     |GMAC  |Act (M)|
|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k)                    |88.53|98.64|          21.76|         475.77|534.14|1413.22|
|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k)                    |88.32|98.54|          42.53|         475.32|292.78| 668.76|
|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)                        |88.20|98.53|          50.87|         119.88|138.02| 703.99|
|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)                      |88.04|98.40|          36.42|         212.33|244.75| 942.15|
|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)                      |87.98|98.56|          71.75|         212.03|132.55| 445.84|
|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)                        |87.92|98.54|         104.71|         119.65| 73.80| 332.90|
|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k)        |87.81|98.37|         106.55|         116.14| 70.97| 318.95|
|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k)  |87.47|98.37|         149.49|         116.09| 72.98| 213.74|
|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k)            |87.39|98.31|         160.80|          73.88| 47.69| 209.43|
|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k)        |86.89|98.02|         375.86|         116.14| 23.15|  92.64|
|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k)  |86.64|98.02|         501.03|         116.09| 24.20|  62.77|
|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k)                                          |86.60|97.92|          50.75|         119.88|138.02| 703.99|
|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k)                      |86.57|97.89|         631.88|          73.87| 15.09|  49.22|
|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k)                                        |86.52|97.88|          36.04|         212.33|244.75| 942.15|
|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k)            |86.49|97.90|         620.58|          73.88| 15.18|  54.78|
|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k)                                          |86.29|97.80|         101.09|         119.65| 73.80| 332.90|
|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k)                                        |86.23|97.69|          70.56|         212.03|132.55| 445.84|
|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k)                                        |86.10|97.76|          88.63|          69.13| 67.26| 383.77|
|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)                                          |85.67|97.58|         144.25|          31.05| 33.49| 257.59|
|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k)                                        |85.54|97.46|         188.35|          69.02| 35.87| 183.65|
|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)                                          |85.11|97.38|         293.46|          30.98| 17.53| 123.42|
|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k)                                        |84.93|96.97|         247.71|         211.79| 43.68| 127.35|
|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k)          |84.90|96.96|        1025.45|          41.72|  8.11|  40.13|
|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k)                                          |84.85|96.99|         358.25|         119.47| 24.04|  95.01|
|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k)                      |84.63|97.06|         575.53|          66.01| 14.67|  58.38|
|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k)                              |84.61|96.74|         625.81|          73.88| 15.18|  54.78|
|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k)                        |84.49|96.76|         693.82|          64.90| 10.75|  49.30|
|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k)                                        |84.43|96.83|         647.96|          68.93| 11.66|  53.17|
|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k)                          |84.23|96.78|         807.21|          29.15|  6.77|  46.92|
|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k)                                        |83.62|96.38|         989.59|          41.72|  8.04|  34.60|
|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k)                                    |83.50|96.50|        1100.53|          29.06|  5.11|  33.11|
|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)                                          |83.41|96.59|        1004.94|          30.92|  5.60|  35.78|
|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k)                              |83.36|96.45|        1093.03|          41.69|  7.85|  35.47|
|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k)                              |83.11|96.33|        1276.88|          23.70|  6.26|  23.05|
|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k)                        |83.03|96.34|        1341.24|          16.78|  4.37|  26.05|
|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k)                          |82.96|96.26|        1283.24|          15.50|  4.47|  31.92|
|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k)                                    |82.93|96.23|        1218.17|          15.45|  4.46|  30.28|
|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k)                                  |82.39|96.19|        1600.14|          27.44|  4.67|  22.04|
|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k)                                        |82.39|95.84|        1831.21|          27.44|  4.43|  18.73|
|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k)                        |82.05|95.87|        2109.09|          15.15|  2.62|  20.34|
|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k)                                |81.95|95.92|        2525.52|          14.70|  2.47|  12.80|
|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k)                                  |81.70|95.64|        2344.52|          15.14|  2.41|  15.41|
|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k)                          |80.53|95.21|        1594.71|           7.52|  1.85|  24.86|

### Jan 11, 2023
* Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT `.in12k` tags)
  * `convnext_nano.in12k_ft_in1k` - 82.3 @ 224, 82.9 @ 288  (previously released)
  * `convnext_tiny.in12k_ft_in1k` - 84.2 @ 224, 84.5 @ 288
  * `convnext_small.in12k_ft_in1k` - 85.2 @ 224, 85.3 @ 288

### Jan 6, 2023
* Finally got around to adding `--model-kwargs` and `--opt-kwargs` to scripts to pass through rare args directly to model classes from cmd line
  * `train.py --data-dir /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu`
  * `train.py --data-dir /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12`
* Cleanup some popular models to better support arg passthrough / merge with model configs, more to go.

### Jan 5, 2023
* ConvNeXt-V2 models and weights added to existing `convnext.py`
  * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808)
  * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC)
@dataclass
### Dec 23, 2022 🎄☃
* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013)
  * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP
* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit)
* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use)
* More ImageNet-12k (subset of 22k) pretrain models popping up:
  * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448
  * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384
  * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256
  * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288

### Dec 8, 2022
* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)
  * original source: https://github.com/baaivision/EVA

| model                                     | top1 | param_count |  gmac | macts | hub                                     |
|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------|
| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_336.in22k_ft_in1k       | 88.7 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in1k       | 87.9 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 6, 2022
* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`.
  * original source: https://github.com/baaivision/EVA
  * paper: https://arxiv.org/abs/2211.07636

| model                                    |   top1 |   param_count |   gmac |   macts | hub                                     |
|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------|
| eva_giant_patch14_560.m30m_ft_in22k_in1k |   89.8 |        1014.4 | 1906.8 |  2577.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.m30m_ft_in22k_in1k |   89.6 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.clip_ft_in1k       |   89.4 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_224.clip_ft_in1k       |   89.1 |        1012.6 |  267.2 |   192.6 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 5, 2022

* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm`
  * vision_transformer, maxvit, convnext are the first three model impl w/ support
  * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling
  * bugs are likely, but I need feedback so please try it out
  * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x)
* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument
* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output
* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models

| model                                            |   top1 |   param_count |   gmac |   macts | hub                                                                                  |
|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------|
| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k  |   88.6 |         632.5 |  391   |   407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.openai_ft_in12k_in1k  |   88.3 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k)  |
| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k  |   88.2 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k |   88.2 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in12k_in1k  |   88.2 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k)  |
| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in1k        |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k)        |
| vit_large_patch14_clip_336.laion2b_ft_in1k       |   87.9 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k)       |
| vit_huge_patch14_clip_224.laion2b_ft_in1k        |   87.6 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k)        |
| vit_large_patch14_clip_224.laion2b_ft_in1k       |   87.3 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k)       |
| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k  |   87.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_384.openai_ft_in12k_in1k   |   87   |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch16_clip_384.laion2b_ft_in1k        |   86.6 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k)        |
| vit_base_patch16_clip_384.openai_ft_in1k         |   86.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k)         |
| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k  |   86.2 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in12k_in1k   |   85.9 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k  |   85.8 |          88.3 |   17.9 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.laion2b_ft_in1k        |   85.5 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k  |   85.4 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in1k         |   85.3 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k)         |
| vit_base_patch32_clip_384.openai_ft_in12k_in1k   |   85.2 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k  |   83.3 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch32_clip_224.laion2b_ft_in1k        |   82.6 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_224.openai_ft_in1k         |   81.9 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k)         |

* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit
  * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing

| model                              |   top1 |   param_count |   gmac |   macts | hub                                                                    |
|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------|
| maxvit_xlarge_tf_512.in21k_ft_in1k |   88.5 |         475.8 |  534.1 |  1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |
| maxvit_xlarge_tf_384.in21k_ft_in1k |   88.3 |         475.3 |  292.8 |   668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |
| maxvit_base_tf_512.in21k_ft_in1k   |   88.2 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)   |
| maxvit_large_tf_512.in21k_ft_in1k  |   88   |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)  |
| maxvit_large_tf_384.in21k_ft_in1k  |   88   |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)  |
| maxvit_base_tf_384.in21k_ft_in1k   |   87.9 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)   |
| maxvit_base_tf_512.in1k            |   86.6 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k)            |
| maxvit_large_tf_512.in1k           |   86.5 |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k)           |
| maxvit_base_tf_384.in1k            |   86.3 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k)            |
| maxvit_large_tf_384.in1k           |   86.2 |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k)           |
| maxvit_small_tf_512.in1k           |   86.1 |          69.1 |   67.3 |   383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k)           |
| maxvit_tiny_tf_512.in1k            |   85.7 |          31   |   33.5 |   257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)            |
| maxvit_small_tf_384.in1k           |   85.5 |          69   |   35.9 |   183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k)           |
| maxvit_tiny_tf_384.in1k            |   85.1 |          31   |   17.5 |   123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)            |
| maxvit_large_tf_224.in1k           |   84.9 |         211.8 |   43.7 |   127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k)           |
| maxvit_base_tf_224.in1k            |   84.9 |         119.5 |   24   |    95   | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k)            |
| maxvit_small_tf_224.in1k           |   84.4 |          68.9 |   11.7 |    53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k)           |
| maxvit_tiny_tf_224.in1k            |   83.4 |          30.9 |    5.6 |    35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)            |

### Oct 15, 2022
* Train and validation script enhancements
* Non-GPU (ie CPU) device support
* SLURM compatibility for train script
* HF datasets support (via ReaderHfds)
* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate)
* in_chans !=3 support for scripts / loader
* Adan optimizer
* Can enable per-step LR scheduling via args
* Dataset 'parsers' renamed to 'readers', more descriptive of purpose
* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16`
* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds
* master -> main branch rename

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.

### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G)
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)

### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are finally up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program!
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/readers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases.
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges.
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture

### Jan 5, 2023
* ConvNeXt-V2 models and weights added to existing `convnext.py`
  * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808)
  * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC)

### Dec 23, 2022 🎄☃
* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013)
  * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP
* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit)
* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use)
* More ImageNet-12k (subset of 22k) pretrain models popping up:
  * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448
  * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384
  * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256
  * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288

### Dec 8, 2022
* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)
  * original source: https://github.com/baaivision/EVA

| model                                     | top1 | param_count |  gmac | macts | hub                                     |
|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------|
| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_336.in22k_ft_in1k       | 88.7 |       304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |
| eva_large_patch14_196.in22k_ft_in1k       | 87.9 |       304.1 |  61.6 |  63.5 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 6, 2022
* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. 
  * original source: https://github.com/baaivision/EVA
  * paper: https://arxiv.org/abs/2211.07636

| model                                    |   top1 |   param_count |   gmac |   macts | hub                                     |
|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------|
| eva_giant_patch14_560.m30m_ft_in22k_in1k |   89.8 |        1014.4 | 1906.8 |  2577.2 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.m30m_ft_in22k_in1k |   89.6 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_336.clip_ft_in1k       |   89.4 |        1013   |  620.6 |   550.7 | [link](https://huggingface.co/BAAI/EVA) |
| eva_giant_patch14_224.clip_ft_in1k       |   89.1 |        1012.6 |  267.2 |   192.6 | [link](https://huggingface.co/BAAI/EVA) |

### Dec 5, 2022

* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm`
  * vision_transformer, maxvit, convnext are the first three model impl w/ support
  * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling
  * bugs are likely, but I need feedback so please try it out
  * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x)
* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument
* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output
* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models

| model                                            |   top1 |   param_count |   gmac |   macts | hub                                                                                  |
|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------|
| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k  |   88.6 |         632.5 |  391   |   407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.openai_ft_in12k_in1k  |   88.3 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k)  |
| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k  |   88.2 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k)  |
| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k |   88.2 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in12k_in1k  |   88.2 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k)  |
| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) |
| vit_large_patch14_clip_224.openai_ft_in1k        |   87.9 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k)        |
| vit_large_patch14_clip_336.laion2b_ft_in1k       |   87.9 |         304.5 |  191.1 |   270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k)       |
| vit_huge_patch14_clip_224.laion2b_ft_in1k        |   87.6 |         632   |  167.4 |   139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k)        |
| vit_large_patch14_clip_224.laion2b_ft_in1k       |   87.3 |         304.2 |   81.1 |    88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k)       |
| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k  |   87.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_384.openai_ft_in12k_in1k   |   87   |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch16_clip_384.laion2b_ft_in1k        |   86.6 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k)        |
| vit_base_patch16_clip_384.openai_ft_in1k         |   86.2 |          86.9 |   55.5 |   101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k)         |
| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k  |   86.2 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in12k_in1k   |   85.9 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k  |   85.8 |          88.3 |   17.9 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.laion2b_ft_in1k        |   85.5 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k  |   85.4 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k)  |
| vit_base_patch16_clip_224.openai_ft_in1k         |   85.3 |          86.6 |   17.6 |    23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k)         |
| vit_base_patch32_clip_384.openai_ft_in12k_in1k   |   85.2 |          88.3 |   13.1 |    16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k)   |
| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k  |   83.3 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k)  |
| vit_base_patch32_clip_224.laion2b_ft_in1k        |   82.6 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k)        |
| vit_base_patch32_clip_224.openai_ft_in1k         |   81.9 |          88.2 |    4.4 |     5   | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k)         |

* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit
  * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing

| model                              |   top1 |   param_count |   gmac |   macts | hub                                                                    |
|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------|
| maxvit_xlarge_tf_512.in21k_ft_in1k |   88.5 |         475.8 |  534.1 |  1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |
| maxvit_xlarge_tf_384.in21k_ft_in1k |   88.3 |         475.3 |  292.8 |   668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |
| maxvit_base_tf_512.in21k_ft_in1k   |   88.2 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)   |
| maxvit_large_tf_512.in21k_ft_in1k  |   88   |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)  |
| maxvit_large_tf_384.in21k_ft_in1k  |   88   |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)  |
| maxvit_base_tf_384.in21k_ft_in1k   |   87.9 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)   |
| maxvit_base_tf_512.in1k            |   86.6 |         119.9 |  138   |   704   | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k)            |
| maxvit_large_tf_512.in1k           |   86.5 |         212.3 |  244.8 |   942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k)           |
| maxvit_base_tf_384.in1k            |   86.3 |         119.6 |   73.8 |   332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k)            |
| maxvit_large_tf_384.in1k           |   86.2 |         212   |  132.6 |   445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k)           |
| maxvit_small_tf_512.in1k           |   86.1 |          69.1 |   67.3 |   383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k)           |
| maxvit_tiny_tf_512.in1k            |   85.7 |          31   |   33.5 |   257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)            |
| maxvit_small_tf_384.in1k           |   85.5 |          69   |   35.9 |   183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k)           |
| maxvit_tiny_tf_384.in1k            |   85.1 |          31   |   17.5 |   123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)            |
| maxvit_large_tf_224.in1k           |   84.9 |         211.8 |   43.7 |   127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k)           |
| maxvit_base_tf_224.in1k            |   84.9 |         119.5 |   24   |    95   | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k)            |
| maxvit_small_tf_224.in1k           |   84.4 |          68.9 |   11.7 |    53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k)           |
| maxvit_tiny_tf_224.in1k            |   83.4 |          30.9 |    5.6 |    35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)            |

### Oct 15, 2022
* Train and validation script enhancements
* Non-GPU (ie CPU) device support
* SLURM compatibility for train script
* HF datasets support (via ReaderHfds)
* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate)
* in_chans !=3 support for scripts / loader
* Adan optimizer
* Can enable per-step LR scheduling via args
* Dataset 'parsers' renamed to 'readers', more descriptive of purpose
* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16`
* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds
* master -> main branch rename

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.
  
### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G) 
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)


### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights 
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program!
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. 
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. 
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture