""" Hybrid Vision Transformer (ViT) in PyTorch A PyTorch implement of the Hybrid Vision Transformers as described in: 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 `How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` - https://arxiv.org/abs/2106.10270 NOTE These hybrid model definitions depend on code in vision_transformer.py. They were moved here to keep file sizes sane. Hacked together by / Copyright 2020, Ross Wightman """ import math from functools import partial from typing import Dict, List, Optional, Tuple, Type, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import StdConv2dSame, StdConv2d, ConvNormAct, to_2tuple, to_ntuple, Format, nchw_to from ._builder import build_model_with_cfg from ._registry import generate_default_cfgs, register_model, register_model_deprecations from .resnet import resnet26d, resnet50d from .resnetv2 import ResNetV2, create_resnetv2_stem from .vision_transformer import VisionTransformer class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ output_fmt: Format dynamic_img_pad: torch.jit.Final[bool] def __init__( self, backbone: nn.Module, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 1, feature_size: Optional[Union[int, Tuple[int, int]]] = None, feature_ratio: Optional[Union[int, Tuple[int, int]]] = None, in_chans: int = 3, embed_dim: int = 768, bias: bool = True, proj: bool = True, flatten: bool = True, output_fmt: Optional[str] = None, strict_img_size: bool = True, dynamic_img_pad: bool = False, ): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # NOTE Most reliable way of determining output dims is to run forward pass training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1])) if isinstance(o, (list, tuple)): o = o[-1] # last feature if backbone outputs list/tuple of features feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) feature_ratio = tuple([s // f for s, f in zip(img_size, feature_size)]) else: feature_size = to_2tuple(feature_size) feature_ratio = to_2tuple(feature_ratio or 16) if hasattr(self.backbone, 'feature_info'): feature_dim = self.backbone.feature_info.channels()[-1] else: feature_dim = self.backbone.num_features if not dynamic_img_pad: assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0 self.feature_size = feature_size self.feature_ratio = feature_ratio self.grid_size = tuple([f // p for f, p in zip(self.feature_size, self.patch_size)]) self.num_patches = self.grid_size[0] * self.grid_size[1] if output_fmt is not None: self.flatten = False self.output_fmt = Format(output_fmt) else: # flatten spatial dim and transpose to channels last, kept for bwd compat self.flatten = flatten self.output_fmt = Format.NCHW self.strict_img_size = strict_img_size self.dynamic_img_pad = dynamic_img_pad if proj: self.proj = nn.Conv2d( feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, ) else: assert feature_dim == embed_dim,\ f'The feature dim ({feature_dim} must match embed dim ({embed_dim}) when projection disabled.' self.proj = nn.Identity() def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]: total_reduction = ( self.feature_ratio[0] * self.patch_size[0], self.feature_ratio[1] * self.patch_size[1] ) if as_scalar: return max(total_reduction) else: return total_reduction def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]: """ Get feature grid size taking account dynamic padding and backbone network feat reduction """ feat_size = (img_size[0] // self.feature_ratio[0], img_size[1] // self.feature_ratio[1]) if self.dynamic_img_pad: return math.ceil(feat_size[0] / self.patch_size[0]), math.ceil(feat_size[1] / self.patch_size[1]) else: return feat_size[0] // self.patch_size[0], feat_size[1] // self.patch_size[1] @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True): if hasattr(self.backbone, 'set_grad_checkpointing'): self.backbone.set_grad_checkpointing(enable=enable) elif hasattr(self.backbone, 'grad_checkpointing'): self.backbone.grad_checkpointing = enable def forward(self, x): x = self.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features _, _, H, W = x.shape if self.dynamic_img_pad: pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] x = F.pad(x, (0, pad_w, 0, pad_h)) x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # NCHW -> NLC elif self.output_fmt != Format.NCHW: x = nchw_to(x, self.output_fmt) return x class HybridEmbedWithSize(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__( self, backbone: nn.Module, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 1, feature_size: Optional[Union[int, Tuple[int, int]]] = None, feature_ratio: Optional[Union[int, Tuple[int, int]]] = None, in_chans: int = 3, embed_dim: int = 768, bias=True, proj=True, ): super().__init__( backbone=backbone, img_size=img_size, patch_size=patch_size, feature_size=feature_size, feature_ratio=feature_ratio, in_chans=in_chans, embed_dim=embed_dim, bias=bias, proj=proj, ) @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True): if hasattr(self.backbone, 'set_grad_checkpointing'): self.backbone.set_grad_checkpointing(enable=enable) elif hasattr(self.backbone, 'grad_checkpointing'): self.backbone.grad_checkpointing = enable def forward(self, x) -> Tuple[torch.Tensor, List[int]]: x = self.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.proj(x) return x.flatten(2).transpose(1, 2), x.shape[-2:] class ConvStem(nn.Sequential): def __init__( self, in_chans: int = 3, depth: int = 3, channels: Union[int, Tuple[int, ...]] = 64, kernel_size: Union[int, Tuple[int, ...]] = 3, stride: Union[int, Tuple[int, ...]] = (2, 2, 2), padding: Union[str, int, Tuple[int, ...]] = "", norm_layer: Type[nn.Module] = nn.BatchNorm2d, act_layer: Type[nn.Module] = nn.ReLU, ): super().__init__() if isinstance(channels, int): # a default tiered channel strategy channels = tuple([channels // 2**i for i in range(depth)][::-1]) kernel_size = to_ntuple(depth)(kernel_size) padding = to_ntuple(depth)(padding) assert depth == len(stride) == len(kernel_size) == len(channels) in_chs = in_chans for i in range(len(channels)): last_conv = i == len(channels) - 1 self.add_module(f'{i}', ConvNormAct( in_chs, channels[i], kernel_size=kernel_size[i], stride=stride[i], padding=padding[i], bias=last_conv, apply_norm=not last_conv, apply_act=not last_conv, norm_layer=norm_layer, act_layer=act_layer, )) in_chs = channels[i] def _resnetv2(layers=(3, 4, 9), **kwargs): """ ResNet-V2 backbone helper""" padding_same = kwargs.get('padding_same', True) stem_type = 'same' if padding_same else '' conv_layer = partial(StdConv2dSame, eps=1e-8) if padding_same else partial(StdConv2d, eps=1e-8) if len(layers): backbone = ResNetV2( layers=layers, num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3), preact=False, stem_type=stem_type, conv_layer=conv_layer) else: backbone = create_resnetv2_stem( kwargs.get('in_chans', 3), stem_type=stem_type, preact=False, conv_layer=conv_layer) return backbone def _convert_mobileclip(state_dict, model, prefix='image_encoder.model.'): out = {} for k, v in state_dict.items(): if not k.startswith(prefix): continue k = k.replace(prefix, '') k = k.replace('patch_emb.', 'patch_embed.backbone.') k = k.replace('block.conv', 'conv') k = k.replace('block.norm', 'bn') k = k.replace('post_transformer_norm.', 'norm.') k = k.replace('pre_norm_mha.0', 'norm1') k = k.replace('pre_norm_mha.1', 'attn') k = k.replace('pre_norm_ffn.0', 'norm2') k = k.replace('pre_norm_ffn.1', 'mlp.fc1') k = k.replace('pre_norm_ffn.4', 'mlp.fc2') k = k.replace('qkv_proj.', 'qkv.') k = k.replace('out_proj.', 'proj.') k = k.replace('transformer.', 'blocks.') if k == 'pos_embed.pos_embed.pos_embed': k = 'pos_embed' v = v.squeeze(0) if 'classifier.proj' in k: bias_k = k.replace('classifier.proj', 'head.bias') k = k.replace('classifier.proj', 'head.weight') v = v.T out[bias_k] = torch.zeros(v.shape[0]) out[k] = v return out def checkpoint_filter_fn( state_dict: Dict[str, torch.Tensor], model: VisionTransformer, interpolation: str = 'bicubic', antialias: bool = True, ) -> Dict[str, torch.Tensor]: from .vision_transformer import checkpoint_filter_fn as _filter_fn if 'image_encoder.model.patch_emb.0.block.conv.weight' in state_dict: state_dict = _convert_mobileclip(state_dict, model) return _filter_fn(state_dict, model, interpolation=interpolation, antialias=antialias) def _create_vision_transformer_hybrid(variant, backbone, embed_args=None, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) embed_args = embed_args or {} embed_layer = partial(HybridEmbed, backbone=backbone, **embed_args) kwargs.setdefault('embed_layer', embed_layer) kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set return build_model_with_cfg( VisionTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'patch_embed.backbone.stem.conv', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ # hybrid in-1k models (weights from official JAX impl where they exist) 'vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True, first_conv='patch_embed.backbone.conv'), 'vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', first_conv='patch_embed.backbone.conv', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_small_r26_s32_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_light0-wd_0.03-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True, ), 'vit_small_r26_s32_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_base_r26_s32_224.untrained': _cfg(), 'vit_base_r50_s16_384.orig_in21k_ft_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_large_r50_s32_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True, ), 'vit_large_r50_s32_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True, ), # hybrid in-21k models (weights from official Google JAX impl where they exist) 'vit_tiny_r_s16_p8_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, first_conv='patch_embed.backbone.conv', custom_load=True), 'vit_small_r26_s32_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), 'vit_base_r50_s16_224.orig_in21k': _cfg( #url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth', hf_hub_id='timm/', num_classes=0, crop_pct=0.9), 'vit_large_r50_s32_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), # hybrid models (using timm resnet backbones) 'vit_small_resnet26d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_small_resnet50d_s16_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet26d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet50d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_mci_224.apple_mclip_lt': _cfg( hf_hub_id='apple/mobileclip_b_lt_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_blt.pt', num_classes=512, mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', ), 'vit_base_mci_224.apple_mclip': _cfg( hf_hub_id='apple/mobileclip_b_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_b.pt', num_classes=512, mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', ), }) @register_model def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs) -> VisionTransformer: """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224. """ backbone = _resnetv2(layers=(), **kwargs) model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) model = _create_vision_transformer_hybrid( 'vit_tiny_r_s16_p8_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs) -> VisionTransformer: """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 384 x 384. """ backbone = _resnetv2(layers=(), **kwargs) model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) model = _create_vision_transformer_hybrid( 'vit_tiny_r_s16_p8_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-S/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=384, depth=12, num_heads=6) model = _create_vision_transformer_hybrid( 'vit_small_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_r26_s32_384(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-S/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=384, depth=12, num_heads=6) model = _create_vision_transformer_hybrid( 'vit_small_r26_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-B/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r50_s16_224(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-B/S16 hybrid from original paper (https://arxiv.org/abs/2010.11929). """ backbone = _resnetv2((3, 4, 9), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r50_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r50_s16_384(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ backbone = _resnetv2((3, 4, 9), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r50_s16_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_large_r50_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-L/S32 hybrid. """ backbone = _resnetv2((3, 4, 6, 3), **kwargs) model_args = dict(embed_dim=1024, depth=24, num_heads=16) model = _create_vision_transformer_hybrid( 'vit_large_r50_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_large_r50_s32_384(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-L/S32 hybrid. """ backbone = _resnetv2((3, 4, 6, 3), **kwargs) model_args = dict(embed_dim=1024, depth=24, num_heads=16) model = _create_vision_transformer_hybrid( 'vit_large_r50_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) model = _create_vision_transformer_hybrid( 'vit_small_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_resnet50d_s16_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights. """ backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3]) model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) model = _create_vision_transformer_hybrid( 'vit_small_resnet50d_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_resnet50d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. """ backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_resnet50d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_mci_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. """ backbone = ConvStem( channels=(768//4, 768//4, 768), stride=(4, 2, 2), kernel_size=(4, 2, 2), padding=0, in_chans=kwargs.get('in_chans', 3), act_layer=nn.GELU, ) model_args = dict(embed_dim=768, depth=12, num_heads=12, no_embed_class=True) model = _create_vision_transformer_hybrid( 'vit_base_mci_224', backbone=backbone, embed_args=dict(proj=False), pretrained=pretrained, **dict(model_args, **kwargs) ) return model register_model_deprecations(__name__, { 'vit_tiny_r_s16_p8_224_in21k': 'vit_tiny_r_s16_p8_224.augreg_in21k', 'vit_small_r26_s32_224_in21k': 'vit_small_r26_s32_224.augreg_in21k', 'vit_base_r50_s16_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_base_resnet50_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_large_r50_s32_224_in21k': 'vit_large_r50_s32_224.augreg_in21k', 'vit_base_resnet50_384': 'vit_base_r50_s16_384.orig_in21k_ft_in1k' })