"""SwiftFormer SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications Code: https://github.com/Amshaker/SwiftFormer Paper: https://arxiv.org/pdf/2303.15446 @InProceedings{Shaker_2023_ICCV, author = {Shaker, Abdelrahman and Maaz, Muhammad and Rasheed, Hanoona and Khan, Salman and Yang, Ming-Hsuan and Khan, Fahad Shahbaz}, title = {SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, year = {2023}, } """ import re from typing import Any, Dict, List, Optional, Set, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, Linear, LayerType, to_2tuple, trunc_normal_ from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint_seq from ._registry import generate_default_cfgs, register_model __all__ = ['SwiftFormer'] class LayerScale2d(nn.Module): def __init__(self, dim: int, init_values: float = 1e-5, inplace: bool = False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter( init_values * torch.ones(dim, 1, 1), requires_grad=True) def forward(self, x: torch.Tensor) -> torch.Tensor: return x.mul_(self.gamma) if self.inplace else x * self.gamma class Embedding(nn.Module): """ Patch Embedding that is implemented by a layer of conv. Input: tensor in shape [B, C, H, W] Output: tensor in shape [B, C, H/stride, W/stride] """ def __init__( self, in_chans: int = 3, embed_dim: int = 768, patch_size: int = 16, stride: int = 16, padding: int = 0, norm_layer: LayerType = nn.BatchNorm2d, ): super().__init__() patch_size = to_2tuple(patch_size) stride = to_2tuple(stride) padding = to_2tuple(padding) self.proj = nn.Conv2d(in_chans, embed_dim, patch_size, stride, padding) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) x = self.norm(x) return x class ConvEncoder(nn.Module): """ Implementation of ConvEncoder with 3*3 and 1*1 convolutions. Input: tensor with shape [B, C, H, W] Output: tensor with shape [B, C, H, W] """ def __init__( self, dim: int, hidden_dim: int = 64, kernel_size: int = 3, drop_path: float = 0., act_layer: LayerType = nn.GELU, norm_layer: LayerType = nn.BatchNorm2d, use_layer_scale: bool = True, ): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size, padding=kernel_size // 2, groups=dim) self.norm = norm_layer(dim) self.pwconv1 = nn.Conv2d(dim, hidden_dim, 1) self.act = act_layer() self.pwconv2 = nn.Conv2d(hidden_dim, dim, 1) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.layer_scale = LayerScale2d(dim, 1) if use_layer_scale else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: input = x x = self.dwconv(x) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) x = self.layer_scale(x) x = input + self.drop_path(x) return x class Mlp(nn.Module): """ Implementation of MLP layer with 1*1 convolutions. Input: tensor with shape [B, C, H, W] Output: tensor with shape [B, C, H, W] """ def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: LayerType = nn.GELU, norm_layer: LayerType = nn.BatchNorm2d, drop: float = 0., ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.norm1 = norm_layer(in_features) self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.norm1(x) x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class EfficientAdditiveAttention(nn.Module): """ Efficient Additive Attention module for SwiftFormer. Input: tensor in shape [B, C, H, W] Output: tensor in shape [B, C, H, W] """ def __init__(self, in_dims: int = 512, token_dim: int = 256, num_heads: int = 1): super().__init__() self.scale_factor = token_dim ** -0.5 self.to_query = nn.Linear(in_dims, token_dim * num_heads) self.to_key = nn.Linear(in_dims, token_dim * num_heads) self.w_g = nn.Parameter(torch.randn(token_dim * num_heads, 1)) self.proj = nn.Linear(token_dim * num_heads, token_dim * num_heads) self.final = nn.Linear(token_dim * num_heads, token_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: B, _, H, W = x.shape x = x.flatten(2).permute(0, 2, 1) query = F.normalize(self.to_query(x), dim=-1) key = F.normalize(self.to_key(x), dim=-1) attn = F.normalize(query @ self.w_g * self.scale_factor, dim=1) attn = torch.sum(attn * query, dim=1, keepdim=True) out = self.proj(attn * key) + query out = self.final(out).permute(0, 2, 1).reshape(B, -1, H, W) return out class LocalRepresentation(nn.Module): """ Local Representation module for SwiftFormer that is implemented by 3*3 depth-wise and point-wise convolutions. Input: tensor in shape [B, C, H, W] Output: tensor in shape [B, C, H, W] """ def __init__( self, dim: int, kernel_size: int = 3, drop_path: float = 0., use_layer_scale: bool = True, act_layer: LayerType = nn.GELU, norm_layer: LayerType = nn.BatchNorm2d, ): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size, padding=kernel_size // 2, groups=dim) self.norm = norm_layer(dim) self.pwconv1 = nn.Conv2d(dim, dim, kernel_size=1) self.act = act_layer() self.pwconv2 = nn.Conv2d(dim, dim, kernel_size=1) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.layer_scale = LayerScale2d(dim, 1) if use_layer_scale else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: skip = x x = self.dwconv(x) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) x = self.layer_scale(x) x = skip + self.drop_path(x) return x class Block(nn.Module): """ SwiftFormer Encoder Block for SwiftFormer. It consists of : (1) Local representation module, (2) EfficientAdditiveAttention, and (3) MLP block. Input: tensor in shape [B, C, H, W] Output: tensor in shape [B, C, H, W] """ def __init__( self, dim: int, mlp_ratio: float = 4., drop_rate: float = 0., drop_path: float = 0., act_layer: LayerType = nn.GELU, norm_layer: LayerType = nn.BatchNorm2d, use_layer_scale: bool = True, layer_scale_init_value: float = 1e-5, ): super().__init__() self.local_representation = LocalRepresentation( dim=dim, use_layer_scale=use_layer_scale, act_layer=act_layer, norm_layer=norm_layer, ) self.attn = EfficientAdditiveAttention(in_dims=dim, token_dim=dim) self.linear = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, norm_layer=norm_layer, drop=drop_rate, ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.layer_scale_1 = LayerScale2d(dim, layer_scale_init_value) \ if use_layer_scale else nn.Identity() self.layer_scale_2 = LayerScale2d(dim, layer_scale_init_value) \ if use_layer_scale else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.local_representation(x) x = x + self.drop_path(self.layer_scale_1(self.attn(x))) x = x + self.drop_path(self.layer_scale_2(self.linear(x))) return x class Stage(nn.Module): """ Implementation of each SwiftFormer stages. Here, SwiftFormerEncoder used as the last block in all stages, while ConvEncoder used in the rest of the blocks. Input: tensor in shape [B, C, H, W] Output: tensor in shape [B, C, H, W] """ def __init__( self, dim: int, index: int, layers: List[int], mlp_ratio: float = 4., act_layer: LayerType = nn.GELU, norm_layer: LayerType = nn.BatchNorm2d, drop_rate: float = 0., drop_path_rate: float = 0., use_layer_scale: bool = True, layer_scale_init_value: float = 1e-5, downsample: Optional[LayerType] = None, ): super().__init__() self.grad_checkpointing = False self.downsample = downsample if downsample is not None else nn.Identity() blocks = [] for block_idx in range(layers[index]): block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) if layers[index] - block_idx <= 1: blocks.append(Block( dim, mlp_ratio=mlp_ratio, drop_rate=drop_rate, drop_path=block_dpr, act_layer=act_layer, norm_layer=norm_layer, use_layer_scale=use_layer_scale, layer_scale_init_value=layer_scale_init_value, )) else: blocks.append(ConvEncoder( dim=dim, hidden_dim=int(mlp_ratio * dim), kernel_size=3, drop_path=block_dpr, act_layer=act_layer, norm_layer=norm_layer, use_layer_scale=use_layer_scale, )) self.blocks = nn.Sequential(*blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x class SwiftFormer(nn.Module): def __init__( self, layers: List[int] = [3, 3, 6, 4], embed_dims: List[int] = [48, 56, 112, 220], mlp_ratios: int = 4, downsamples: List[bool] = [False, True, True, True], act_layer: LayerType = nn.GELU, down_patch_size: int = 3, down_stride: int = 2, down_pad: int = 1, num_classes: int = 1000, drop_rate: float = 0., drop_path_rate: float = 0., use_layer_scale: bool = True, layer_scale_init_value: float = 1e-5, global_pool: str = 'avg', output_stride: int = 32, in_chans: int = 3, **kwargs, ): super().__init__() assert output_stride == 32 self.num_classes = num_classes self.global_pool = global_pool self.feature_info = [] self.stem = nn.Sequential( nn.Conv2d(in_chans, embed_dims[0] // 2, 3, 2, 1), nn.BatchNorm2d(embed_dims[0] // 2), nn.ReLU(), nn.Conv2d(embed_dims[0] // 2, embed_dims[0], 3, 2, 1), nn.BatchNorm2d(embed_dims[0]), nn.ReLU(), ) prev_dim = embed_dims[0] stages = [] for i in range(len(layers)): downsample = Embedding( in_chans=prev_dim, embed_dim=embed_dims[i], patch_size=down_patch_size, stride=down_stride, padding=down_pad, ) if downsamples[i] else nn.Identity() stage = Stage( dim=embed_dims[i], index=i, layers=layers, mlp_ratio=mlp_ratios, act_layer=act_layer, drop_rate=drop_rate, drop_path_rate=drop_path_rate, use_layer_scale=use_layer_scale, layer_scale_init_value=layer_scale_init_value, downsample=downsample, ) prev_dim = embed_dims[i] stages.append(stage) self.feature_info += [dict(num_chs=embed_dims[i], reduction=2**(i+2), module=f'stages.{i}')] self.stages = nn.Sequential(*stages) # Classifier head self.num_features = self.head_hidden_size = out_chs = embed_dims[-1] self.norm = nn.BatchNorm2d(out_chs) self.head_drop = nn.Dropout(drop_rate) self.head = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() # assuming model is always distilled (valid for current checkpoints, will split def if that changes) self.head_dist = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token self._initialize_weights() def _initialize_weights(self): for name, m in self.named_modules(): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self) -> Set: return set() @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict[str, Any]: matcher = dict( stem=r'^stem', # stem and embed blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> Tuple[nn.Module, nn.Module]: return self.head, self.head_dist def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.head_dist = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def set_distilled_training(self, enable: bool = True): self.distilled_training = enable def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages), indices) last_idx = len(self.stages) - 1 # forward pass x = self.stem(x) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.stages else: stages = self.stages[:max_index + 1] for feat_idx, stage in enumerate(stages): x = stage(x) if feat_idx in take_indices: if norm and feat_idx == last_idx: x_inter = self.norm(x) # applying final norm last intermediate else: x_inter = x intermediates.append(x_inter) if intermediates_only: return intermediates if feat_idx == last_idx: x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages), indices) self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.stem(x) x = self.stages(x) x = self.norm(x) return x def forward_head(self, x: torch.Tensor, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=(2, 3)) x = self.head_drop(x) if pre_logits: return x x, x_dist = self.head(x), self.head_dist(x) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train/finetune, inference average the classifier predictions return (x + x_dist) / 2 def forward(self, x: torch.Tensor): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: nn.Module) -> Dict[str, torch.Tensor]: if 'model' in state_dict: state_dict = state_dict['model'] out_dict = {} for k, v in state_dict.items(): k = k.replace('patch_embed.', 'stem.') k = k.replace('dist_head.', 'head_dist.') k = k.replace('attn.Proj.', 'attn.proj.') k = k.replace('.layer_scale_1', '.layer_scale_1.gamma') k = k.replace('.layer_scale_2', '.layer_scale_2.gamma') k = re.sub(r'\.layer_scale(?=$|\.)', '.layer_scale.gamma', k) m = re.match(r'^network\.(\d+)\.(.*)', k) if m: n_idx, rest = int(m.group(1)), m.group(2) stage_idx = n_idx // 2 if n_idx % 2 == 0: k = f'stages.{stage_idx}.blocks.{rest}' else: k = f'stages.{stage_idx+1}.downsample.{rest}' out_dict[k] = v return out_dict def _cfg(url: str = '', **kwargs: Any) -> Dict[str, Any]: return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True, 'crop_pct': .95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': ('head', 'head_dist'), 'paper_ids': 'arXiv:2303.15446', 'paper_name': 'SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications', 'origin_url': 'https://github.com/Amshaker/SwiftFormer', **kwargs } default_cfgs = generate_default_cfgs({ # 'swiftformer_xs.dist_in1k': _cfg(hf_hub_id='timm/'), # 'swiftformer_s.dist_in1k': _cfg(hf_hub_id='timm/'), # 'swiftformer_l1.dist_in1k': _cfg(hf_hub_id='timm/'), # 'swiftformer_l3.dist_in1k': _cfg(hf_hub_id='timm/'), 'swiftformer_xs.untrained': _cfg(), 'swiftformer_s.untrained': _cfg(), 'swiftformer_l1.untrained': _cfg(), 'swiftformer_l3.untrained': _cfg(), }) def _create_swiftformer(variant: str, pretrained: bool = False, **kwargs: Any) -> SwiftFormer: model = build_model_with_cfg( SwiftFormer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs, ) return model @register_model def swiftformer_xs(pretrained: bool = False, **kwargs: Any) -> SwiftFormer: model_args = dict(layers=[3, 3, 6, 4], embed_dims=[48, 56, 112, 220]) return _create_swiftformer('swiftformer_xs', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swiftformer_s(pretrained: bool = False, **kwargs: Any) -> SwiftFormer: model_args = dict(layers=[3, 3, 9, 6], embed_dims=[48, 64, 168, 224]) return _create_swiftformer('swiftformer_s', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swiftformer_l1(pretrained: bool = False, **kwargs: Any) -> SwiftFormer: model_args = dict(layers=[4, 3, 10, 5], embed_dims=[48, 96, 192, 384]) return _create_swiftformer('swiftformer_l1', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def swiftformer_l3(pretrained: bool = False, **kwargs: Any) -> SwiftFormer: model_args = dict(layers=[4, 4, 12, 6], embed_dims=[64, 128, 320, 512]) return _create_swiftformer('swiftformer_l3', pretrained=pretrained, **dict(model_args, **kwargs))