""" Relative Position Vision Transformer (ViT) in PyTorch NOTE: these models are experimental / WIP, expect changes Hacked together by / Copyright 2022, Ross Wightman """ import logging import math from functools import partial from typing import List, Optional, Tuple, Type, Union try: from typing import Literal except ImportError: from typing_extensions import Literal import torch import torch.nn as nn from torch.jit import Final from torch.utils.checkpoint import checkpoint from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.layers import PatchEmbed, Mlp, DropPath, RelPosMlp, RelPosBias, use_fused_attn, LayerType from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import named_apply from ._registry import generate_default_cfgs, register_model from .vision_transformer import get_init_weights_vit __all__ = ['VisionTransformerRelPos'] # model_registry will add each entrypoint fn to this _logger = logging.getLogger(__name__) class RelPosAttention(nn.Module): fused_attn: Final[bool] def __init__( self, dim, num_heads=8, qkv_bias=False, qk_norm=False, rel_pos_cls=None, attn_drop=0., proj_drop=0., norm_layer=nn.LayerNorm, ): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.rel_pos = rel_pos_cls(num_heads=num_heads) if rel_pos_cls else None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q = self.q_norm(q) k = self.k_norm(k) if self.fused_attn: if self.rel_pos is not None: attn_bias = self.rel_pos.get_bias() elif shared_rel_pos is not None: attn_bias = shared_rel_pos else: attn_bias = None x = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if self.rel_pos is not None: attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) elif shared_rel_pos is not None: attn = attn + shared_rel_pos attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class RelPosBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_norm=False, rel_pos_cls=None, init_values=None, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = RelPosAttention( dim, num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, rel_pos_cls=rel_pos_cls, attn_drop=attn_drop, proj_drop=proj_drop, ) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class ResPostRelPosBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_norm=False, rel_pos_cls=None, init_values=None, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.init_values = init_values self.attn = RelPosAttention( dim, num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, rel_pos_cls=rel_pos_cls, attn_drop=attn_drop, proj_drop=proj_drop, ) self.norm1 = norm_layer(dim) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.norm2 = norm_layer(dim) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.init_weights() def init_weights(self): # NOTE this init overrides that base model init with specific changes for the block type if self.init_values is not None: nn.init.constant_(self.norm1.weight, self.init_values) nn.init.constant_(self.norm2.weight, self.init_values) def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): x = x + self.drop_path1(self.norm1(self.attn(x, shared_rel_pos=shared_rel_pos))) x = x + self.drop_path2(self.norm2(self.mlp(x))) return x class VisionTransformerRelPos(nn.Module): """ Vision Transformer w/ Relative Position Bias Differing from classic vit, this impl * uses relative position index (swin v1 / beit) or relative log coord + mlp (swin v2) pos embed * defaults to no class token (can be enabled) * defaults to global avg pool for head (can be changed) * layer-scale (residual branch gain) enabled """ def __init__( self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: Literal['', 'avg', 'token', 'map'] = 'avg', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4., qkv_bias: bool = True, qk_norm: bool = False, init_values: Optional[float] = 1e-6, class_token: bool = False, fc_norm: bool = False, rel_pos_type: str = 'mlp', rel_pos_dim: Optional[int] = None, shared_rel_pos: bool = False, drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., weight_init: Literal['skip', 'jax', 'moco', ''] = 'skip', fix_init: bool = False, embed_layer: Type[nn.Module] = PatchEmbed, norm_layer: Optional[LayerType] = None, act_layer: Optional[LayerType] = None, block_fn: Type[nn.Module] = RelPosBlock ): """ Args: img_size: input image size patch_size: patch size in_chans: number of input channels num_classes: number of classes for classification head global_pool: type of global pooling for final sequence (default: 'avg') embed_dim: embedding dimension depth: depth of transformer num_heads: number of attention heads mlp_ratio: ratio of mlp hidden dim to embedding dim qkv_bias: enable bias for qkv if True qk_norm: Enable normalization of query and key in attention init_values: layer-scale init values class_token: use class token (default: False) fc_norm: use pre classifier norm instead of pre-pool rel_pos_type: type of relative position shared_rel_pos: share relative pos across all blocks drop_rate: dropout rate proj_drop_rate: projection dropout rate attn_drop_rate: attention dropout rate drop_path_rate: stochastic depth rate weight_init: weight init scheme fix_init: apply weight initialization fix (scaling w/ layer index) embed_layer: patch embedding layer norm_layer: normalization layer act_layer: MLP activation layer """ super().__init__() assert global_pool in ('', 'avg', 'token') assert class_token or global_pool != 'token' norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models self.num_prefix_tokens = 1 if class_token else 0 self.grad_checkpointing = False self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) feat_size = self.patch_embed.grid_size r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size rel_pos_args = dict(window_size=feat_size, prefix_tokens=self.num_prefix_tokens) if rel_pos_type.startswith('mlp'): if rel_pos_dim: rel_pos_args['hidden_dim'] = rel_pos_dim if 'swin' in rel_pos_type: rel_pos_args['mode'] = 'swin' rel_pos_cls = partial(RelPosMlp, **rel_pos_args) else: rel_pos_cls = partial(RelPosBias, **rel_pos_args) self.shared_rel_pos = None if shared_rel_pos: self.shared_rel_pos = rel_pos_cls(num_heads=num_heads) # NOTE shared rel pos currently mutually exclusive w/ per-block, but could support both... rel_pos_cls = None self.cls_token = nn.Parameter(torch.zeros(1, self.num_prefix_tokens, embed_dim)) if class_token else None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, rel_pos_cls=rel_pos_cls, init_values=init_values, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, ) for i in range(depth)]) self.feature_info = [ dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] self.norm = norm_layer(embed_dim) if not fc_norm else nn.Identity() # Classifier Head self.fc_norm = norm_layer(embed_dim) if fc_norm else nn.Identity() self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() if weight_init != 'skip': self.init_weights(weight_init) if fix_init: self.fix_init_weight() def init_weights(self, mode=''): assert mode in ('jax', 'moco', '') if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) named_apply(get_init_weights_vit(mode), self) def fix_init_weight(self): def rescale(param, _layer_id): param.div_(math.sqrt(2.0 * _layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) @torch.jit.ignore def no_weight_decay(self): return {'cls_token'} @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^cls_token|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg', 'token') self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, return_prefix_tokens: bool = False, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence return_prefix_tokens: Return both prefix and spatial intermediate tokens norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' reshape = output_fmt == 'NCHW' intermediates = [] take_indices, max_index = feature_take_indices(len(self.blocks), indices) # forward pass B, _, height, width = x.shape x = self.patch_embed(x) if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript blocks = self.blocks else: blocks = self.blocks[:max_index + 1] for i, blk in enumerate(blocks): x = blk(x, shared_rel_pos=shared_rel_pos) if i in take_indices: # normalize intermediates with final norm layer if enabled intermediates.append(self.norm(x) if norm else x) # process intermediates if self.num_prefix_tokens: # split prefix (e.g. class, distill) and spatial feature tokens prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] if reshape: # reshape to BCHW output format H, W = self.patch_embed.dynamic_feat_size((height, width)) intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] if not torch.jit.is_scripting() and return_prefix_tokens: # return_prefix not support in torchscript due to poor type handling intermediates = list(zip(intermediates, prefix_tokens)) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.blocks), indices) self.blocks = self.blocks[:max_index + 1] # truncate blocks if prune_norm: self.norm = nn.Identity() if prune_head: self.fc_norm = nn.Identity() self.reset_classifier(0, '') return take_indices def forward_features(self, x): x = self.patch_embed(x) if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x, shared_rel_pos=shared_rel_pos) else: x = blk(x, shared_rel_pos=shared_rel_pos) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] x = self.fc_norm(x) x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _create_vision_transformer_relpos(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) model = build_model_with_cfg( VisionTransformerRelPos, variant, pretrained, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ 'vit_relpos_base_patch32_plus_rpn_256.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth', hf_hub_id='timm/', input_size=(3, 256, 256)), 'vit_relpos_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240)), 'vit_relpos_small_patch16_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_small_patch16_224-sw-ec2778b4.pth', hf_hub_id='timm/'), 'vit_relpos_medium_patch16_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_224-sw-11c174af.pth', hf_hub_id='timm/'), 'vit_relpos_base_patch16_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth', hf_hub_id='timm/'), 'vit_srelpos_small_patch16_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_small_patch16_224-sw-6cdb8849.pth', hf_hub_id='timm/'), 'vit_srelpos_medium_patch16_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_medium_patch16_224-sw-ad702b8c.pth', hf_hub_id='timm/'), 'vit_relpos_medium_patch16_cls_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth', hf_hub_id='timm/'), 'vit_relpos_base_patch16_cls_224.untrained': _cfg(), 'vit_relpos_base_patch16_clsgap_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth', hf_hub_id='timm/'), 'vit_relpos_small_patch16_rpn_224.untrained': _cfg(), 'vit_relpos_medium_patch16_rpn_224.sw_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth', hf_hub_id='timm/'), 'vit_relpos_base_patch16_rpn_224.untrained': _cfg(), }) @register_model def vit_relpos_base_patch32_plus_rpn_256(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/32+) w/ relative log-coord position and residual post-norm, no class token """ model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, block_fn=ResPostRelPosBlock) model = _create_vision_transformer_relpos( 'vit_relpos_base_patch32_plus_rpn_256', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_base_patch16_plus_240(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16+) w/ relative log-coord position, no class token """ model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14) model = _create_vision_transformer_relpos( 'vit_relpos_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token """ model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=True) model = _create_vision_transformer_relpos( 'vit_relpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token """ model_args = dict( patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=True) model = _create_vision_transformer_relpos( 'vit_relpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token """ model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True) model = _create_vision_transformer_relpos( 'vit_relpos_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_srelpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token """ model_args = dict( patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=False, rel_pos_dim=384, shared_rel_pos=True) model = _create_vision_transformer_relpos( 'vit_srelpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_srelpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token """ model_args = dict( patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False, rel_pos_dim=512, shared_rel_pos=True) model = _create_vision_transformer_relpos( 'vit_srelpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_medium_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-M/16) w/ relative log-coord position, class token present """ model_args = dict( patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False, rel_pos_dim=256, class_token=True, global_pool='token') model = _create_vision_transformer_relpos( 'vit_relpos_medium_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position, class token present """ model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, class_token=True, global_pool='token') model = _create_vision_transformer_relpos( 'vit_relpos_base_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_base_patch16_clsgap_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position, class token present NOTE this config is a bit of a mistake, class token was enabled but global avg-pool w/ fc-norm was not disabled Leaving here for comparisons w/ a future re-train as it performs quite well. """ model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True) model = _create_vision_transformer_relpos( 'vit_relpos_base_patch16_clsgap_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_small_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token """ model_args = dict( patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, block_fn=ResPostRelPosBlock) model = _create_vision_transformer_relpos( 'vit_relpos_small_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_medium_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token """ model_args = dict( patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, block_fn=ResPostRelPosBlock) model = _create_vision_transformer_relpos( 'vit_relpos_medium_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token """ model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, block_fn=ResPostRelPosBlock) model = _create_vision_transformer_relpos( 'vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model