""" ReXNet

A PyTorch impl of `ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network` -
https://arxiv.org/abs/2007.00992

Adapted from original impl at https://github.com/clovaai/rexnet
Copyright (c) 2020-present NAVER Corp. MIT license

Changes for timm, feature extraction, and rounded channel variant hacked together by Ross Wightman
"""

import torch.nn as nn
from math import ceil

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, create_act_layer, ConvBnAct
from .registry import register_model


def _cfg(url=''):
    return {
        'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.conv', 'classifier': 'head.fc',
    }


default_cfgs = dict(
    rexnet_100=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth'),
    rexnet_130=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth'),
    rexnet_150=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth'),
    rexnet_200=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth'),
    rexnetr_100=_cfg(
        url=''),
    rexnetr_130=_cfg(
        url=''),
    rexnetr_150=_cfg(
        url=''),
    rexnetr_200=_cfg(
        url=''),
)


def make_divisible(v, divisor=8, min_value=None):
    min_value = min_value or divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    return new_v


class SEWithNorm(nn.Module):

    def __init__(self, channels, reduction=16, act_layer=nn.ReLU, divisor=1, reduction_channels=None,
                 gate_layer='sigmoid'):
        super(SEWithNorm, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        reduction_channels = reduction_channels or make_divisible(channels // reduction, divisor=divisor)
        print(reduction_channels)
        self.fc1 = nn.Conv2d(
            channels, reduction_channels, kernel_size=1, padding=0, bias=True)
        self.bn = nn.BatchNorm2d(reduction_channels)
        self.act = act_layer(inplace=True)
        self.fc2 = nn.Conv2d(
            reduction_channels, channels, kernel_size=1, padding=0, bias=True)
        self.gate = create_act_layer(gate_layer)

    def forward(self, x):
        x_se = self.avg_pool(x)
        x_se = self.fc1(x_se)
        x_se = self.bn(x_se)
        x_se = self.act(x_se)
        x_se = self.fc2(x_se)
        return x * self.gate(x_se)


class LinearBottleneck(nn.Module):
    def __init__(self, in_chs, out_chs, stride, exp_ratio=1.0, use_se=True, se_rd=12, ch_div=1):
        super(LinearBottleneck, self).__init__()
        self.use_shortcut = stride == 1 and in_chs <= out_chs
        self.in_channels = in_chs
        self.out_channels = out_chs

        if exp_ratio != 1.:
            dw_chs = make_divisible(round(in_chs * exp_ratio), divisor=ch_div)
            self.conv_exp = ConvBnAct(in_chs, dw_chs, act_layer="swish")
        else:
            dw_chs = in_chs
            self.conv_exp = None

        self.conv_dw = ConvBnAct(dw_chs, dw_chs, 3, stride=stride, groups=dw_chs, apply_act=False)
        self.se = SEWithNorm(dw_chs, reduction=se_rd, divisor=ch_div) if use_se else None
        self.act_dw = nn.ReLU6()

        self.conv_pwl = ConvBnAct(dw_chs, out_chs, 1, apply_act=False)

    def feat_channels(self, exp=False):
        return self.conv_dw.out_channels if exp else self.out_channels

    def forward(self, x):
        shortcut = x
        if self.conv_exp is not None:
            x = self.conv_exp(x)
        x = self.conv_dw(x)
        if self.se is not None:
            x = self.se(x)
        x = self.act_dw(x)
        x = self.conv_pwl(x)
        if self.use_shortcut:
            x[:, 0:self.in_channels] += shortcut
        return x


def _block_cfg(width_mult=1.0, depth_mult=1.0, initial_chs=16, final_chs=180, use_se=True, ch_div=1):
    layers = [1, 2, 2, 3, 3, 5]
    strides = [1, 2, 2, 2, 1, 2]
    layers = [ceil(element * depth_mult) for element in layers]
    strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], [])
    exp_ratios = [1] * layers[0] + [6] * sum(layers[1:])
    depth = sum(layers[:]) * 3
    base_chs = initial_chs / width_mult if width_mult < 1.0 else initial_chs

    # The following channel configuration is a simple instance to make each layer become an expand layer.
    out_chs_list = []
    for i in range(depth // 3):
        out_chs_list.append(make_divisible(round(base_chs * width_mult), divisor=ch_div))
        base_chs += final_chs / (depth // 3 * 1.0)

    if use_se:
        use_ses = [False] * (layers[0] + layers[1]) + [True] * sum(layers[2:])
    else:
        use_ses = [False] * sum(layers[:])

    return zip(out_chs_list, exp_ratios, strides, use_ses)


def _build_blocks(block_cfg, prev_chs, width_mult, se_rd=12, ch_div=1, feature_location='bottleneck'):
    feat_exp = feature_location == 'expansion'
    feat_chs = [prev_chs]
    feature_info = []
    curr_stride = 2
    features = []
    for block_idx, (chs, exp_ratio, stride, se) in enumerate(block_cfg):
        if stride > 1:
            fname = 'stem' if block_idx == 0 else f'features.{block_idx - 1}'
            if block_idx > 0 and feat_exp:
                fname += '.act_dw'
            feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=fname)]
            curr_stride *= stride
        features.append(LinearBottleneck(
            in_chs=prev_chs, out_chs=chs, exp_ratio=exp_ratio, stride=stride, use_se=se, se_rd=se_rd, ch_div=ch_div))
        prev_chs = chs
        feat_chs += [features[-1].feat_channels(feat_exp)]
    pen_chs = make_divisible(1280 * width_mult, divisor=ch_div)
    feature_info += [dict(
        num_chs=pen_chs if feat_exp else feat_chs[-1], reduction=curr_stride,
        module=f'features.{len(features) - int(not feat_exp)}')]
    features.append(ConvBnAct(prev_chs, pen_chs, act_layer="swish"))
    return features, feature_info


class ReXNetV1(nn.Module):
    def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32,
                 initial_chs=16, final_chs=180, width_mult=1.0, depth_mult=1.0, use_se=True,
                 se_rd=12, ch_div=1, drop_rate=0.2, feature_location='bottleneck'):
        super(ReXNetV1, self).__init__()

        assert output_stride == 32  # FIXME support dilation
        stem_base_chs = 32 / width_mult if width_mult < 1.0 else 32
        stem_chs = make_divisible(round(stem_base_chs * width_mult), divisor=ch_div)
        self.stem = ConvBnAct(in_chans, stem_chs, 3, stride=2, act_layer='swish')

        block_cfg = _block_cfg(width_mult, depth_mult, initial_chs, final_chs, use_se, ch_div)
        features, self.feature_info = _build_blocks(
            block_cfg, stem_chs, width_mult, se_rd, ch_div, feature_location)
        self.num_features = features[-1].out_channels
        self.features = nn.Sequential(*features)

        self.head = ClassifierHead(self.num_features, num_classes, global_pool, drop_rate)

        # FIXME weight init, the original appears to use PyTorch defaults

    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)

    def forward_features(self, x):
        x = self.stem(x)
        x = self.features(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _create_rexnet(variant, pretrained, **kwargs):
    feature_cfg = dict(flatten_sequential=True)
    if kwargs.get('feature_location', '') == 'expansion':
        feature_cfg['feature_cls'] = 'hook'
    return build_model_with_cfg(
        ReXNetV1, variant, pretrained, default_cfg=default_cfgs[variant], feature_cfg=feature_cfg, **kwargs)


@register_model
def rexnet_100(pretrained=False, **kwargs):
    """ReXNet V1 1.0x"""
    return _create_rexnet('rexnet_100', pretrained, **kwargs)


@register_model
def rexnet_130(pretrained=False, **kwargs):
    """ReXNet V1 1.3x"""
    return _create_rexnet('rexnet_130', pretrained, width_mult=1.3, **kwargs)


@register_model
def rexnet_150(pretrained=False, **kwargs):
    """ReXNet V1 1.5x"""
    return _create_rexnet('rexnet_150', pretrained, width_mult=1.5, **kwargs)


@register_model
def rexnet_200(pretrained=False, **kwargs):
    """ReXNet V1 2.0x"""
    return _create_rexnet('rexnet_200', pretrained, width_mult=2.0, **kwargs)


@register_model
def rexnetr_100(pretrained=False, **kwargs):
    """ReXNet V1 1.0x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_100', pretrained, ch_div=8, **kwargs)


@register_model
def rexnetr_130(pretrained=False, **kwargs):
    """ReXNet V1 1.3x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_130', pretrained, width_mult=1.3, ch_div=8, **kwargs)


@register_model
def rexnetr_150(pretrained=False, **kwargs):
    """ReXNet V1 1.5x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_150', pretrained, width_mult=1.5, ch_div=8, **kwargs)


@register_model
def rexnetr_200(pretrained=False, **kwargs):
    """ReXNet V1 2.0x w/ rounded (mod 8) channels"""
    return _create_rexnet('rexnetr_200', pretrained, width_mult=2.0, ch_div=8, **kwargs)