""" Implementation of Prof-of-Concept Network: StarNet. We make StarNet as simple as possible [to show the key contribution of element-wise multiplication]: - like NO layer-scale in network design, - and NO EMA during training, - which would improve the performance further. Created by: Xu Ma (Email: ma.xu1@northeastern.edu) Modified Date: Mar/29/2024 """ from typing import Any, Dict, List, Optional, Set, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, SelectAdaptivePool2d, Linear, LayerType, trunc_normal_ from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['StarNet'] class ConvBN(nn.Sequential): def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 1, stride: int = 1, padding: int = 0, with_bn: bool = True, **kwargs ): super().__init__() self.add_module('conv', nn.Conv2d( in_channels, out_channels, kernel_size, stride=stride, padding=padding, **kwargs)) if with_bn: self.add_module('bn', nn.BatchNorm2d(out_channels)) nn.init.constant_(self.bn.weight, 1) nn.init.constant_(self.bn.bias, 0) class Block(nn.Module): def __init__( self, dim: int, mlp_ratio: int = 3, drop_path: float = 0., act_layer: LayerType = nn.ReLU6, ): super().__init__() self.dwconv = ConvBN(dim, dim, 7, 1, 3, groups=dim, with_bn=True) self.f1 = ConvBN(dim, mlp_ratio * dim, 1, with_bn=False) self.f2 = ConvBN(dim, mlp_ratio * dim, 1, with_bn=False) self.g = ConvBN(mlp_ratio * dim, dim, 1, with_bn=True) self.dwconv2 = ConvBN(dim, dim, 7, 1, 3, groups=dim, with_bn=False) self.act = act_layer() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: residual = x x = self.dwconv(x) x1, x2 = self.f1(x), self.f2(x) x = self.act(x1) * x2 x = self.dwconv2(self.g(x)) x = residual + self.drop_path(x) return x class StarNet(nn.Module): def __init__( self, base_dim: int = 32, depths: List[int] = [3, 3, 12, 5], mlp_ratio: int = 4, drop_rate: float = 0., drop_path_rate: float = 0., act_layer: LayerType = nn.ReLU6, num_classes: int = 1000, in_chans: int = 3, global_pool: str = 'avg', output_stride: int = 32, **kwargs, ): super().__init__() assert output_stride == 32 self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] stem_chs = 32 # stem layer self.stem = nn.Sequential( ConvBN(in_chans, stem_chs, kernel_size=3, stride=2, padding=1), act_layer(), ) prev_chs = stem_chs # build stages dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth stages = [] cur = 0 for i_layer in range(len(depths)): embed_dim = base_dim * 2 ** i_layer down_sampler = ConvBN(prev_chs, embed_dim, 3, stride=2, padding=1) blocks = [Block(embed_dim, mlp_ratio, dpr[cur + i], act_layer) for i in range(depths[i_layer])] cur += depths[i_layer] prev_chs = embed_dim stages.append(nn.Sequential(down_sampler, *blocks)) self.feature_info.append(dict( num_chs=prev_chs, reduction=2**(i_layer+2), module=f'stages.{i_layer}')) self.stages = nn.Sequential(*stages) # head self.num_features = self.head_hidden_size = prev_chs self.norm = nn.BatchNorm2d(self.num_features) self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.head = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Linear, nn.Conv2d)): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self) -> Set: return set() @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict[str, Any]: matcher = dict( stem=r'^stem\.\d+', blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: # NOTE: cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.head = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages), indices) last_idx = len(self.stages) - 1 # forward pass x = self.stem(x) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.stages else: stages = self.stages[:max_index + 1] for feat_idx, stage in enumerate(stages): x = stage(x) if feat_idx in take_indices: if norm and feat_idx == last_idx: x_inter = self.norm(x) # applying final norm last intermediate else: x_inter = x intermediates.append(x_inter) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages), indices) self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.stem(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x, flatten=True) else: x = self.stages(x) x = self.norm(x) return x def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: x = self.global_pool(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return x if pre_logits else self.head(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict: Dict[str, torch.Tensor], model: nn.Module) -> Dict[str, torch.Tensor]: if 'state_dict' in state_dict: state_dict = state_dict['state_dict'] out_dict = state_dict return out_dict def _cfg(url: str = '', **kwargs: Any) -> Dict[str, Any]: return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0.conv', 'classifier': 'head', 'paper_ids': 'arXiv:2403.19967', 'paper_name': 'Rewrite the Stars', 'origin_url': 'https://github.com/ma-xu/Rewrite-the-Stars', **kwargs } default_cfgs = generate_default_cfgs({ 'starnet_s1.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s1.pth.tar', ), 'starnet_s2.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s2.pth.tar', ), 'starnet_s3.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s3.pth.tar', ), 'starnet_s4.in1k': _cfg( # hf_hub_id='timm/', url='https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s4.pth.tar', ), 'starnet_s050.untrained': _cfg(), 'starnet_s100.untrained': _cfg(), 'starnet_s150.untrained': _cfg(), }) def _create_starnet(variant: str, pretrained: bool = False, **kwargs: Any) -> StarNet: model = build_model_with_cfg( StarNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs, ) return model @register_model def starnet_s1(pretrained: bool = False, **kwargs: Any) -> StarNet: model_args = dict(base_dim=24, depths=[2, 2, 8, 3]) return _create_starnet('starnet_s1', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def starnet_s2(pretrained: bool = False, **kwargs: Any) -> StarNet: model_args = dict(base_dim=32, depths=[1, 2, 6, 2]) return _create_starnet('starnet_s2', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def starnet_s3(pretrained: bool = False, **kwargs: Any) -> StarNet: model_args = dict(base_dim=32, depths=[2, 2, 8, 4]) return _create_starnet('starnet_s3', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def starnet_s4(pretrained: bool = False, **kwargs: Any) -> StarNet: model_args = dict(base_dim=32, depths=[3, 3, 12, 5]) return _create_starnet('starnet_s4', pretrained=pretrained, **dict(model_args, **kwargs)) # very small networks # @register_model def starnet_s050(pretrained: bool = False, **kwargs: Any) -> StarNet: model_args = dict(base_dim=16, depths=[1, 1, 3, 1], mlp_ratio=3) return _create_starnet('starnet_s050', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def starnet_s100(pretrained: bool = False, **kwargs: Any) -> StarNet: model_args = dict(base_dim=20, depths=[1, 2, 4, 1], mlp_ratio=4) return _create_starnet('starnet_s100', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def starnet_s150(pretrained: bool = False, **kwargs: Any) -> StarNet: model_args = dict(base_dim=24, depths=[1, 2, 4, 2], mlp_ratio=3) return _create_starnet('starnet_s150', pretrained=pretrained, **dict(model_args, **kwargs))