import hashlib
import json
import logging
import os
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional, Union

import torch
from torch.hub import HASH_REGEX, download_url_to_file, urlparse

try:
    from torch.hub import get_dir
except ImportError:
    from torch.hub import _get_torch_home as get_dir

from timm import __version__
from timm.models._pretrained import filter_pretrained_cfg

try:
    from huggingface_hub import (
        create_repo, get_hf_file_metadata,
        hf_hub_download, hf_hub_url,
        repo_type_and_id_from_hf_id, upload_folder)
    from huggingface_hub.utils import EntryNotFoundError
    hf_hub_download = partial(hf_hub_download, library_name="timm", library_version=__version__)
    _has_hf_hub = True
except ImportError:
    hf_hub_download = None
    _has_hf_hub = False

_logger = logging.getLogger(__name__)

__all__ = ['get_cache_dir', 'download_cached_file', 'has_hf_hub', 'hf_split', 'load_model_config_from_hf',
           'load_state_dict_from_hf', 'save_for_hf', 'push_to_hf_hub']


def get_cache_dir(child_dir=''):
    """
    Returns the location of the directory where models are cached (and creates it if necessary).
    """
    # Issue warning to move data if old env is set
    if os.getenv('TORCH_MODEL_ZOO'):
        _logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')

    hub_dir = get_dir()
    child_dir = () if not child_dir else (child_dir,)
    model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir)
    os.makedirs(model_dir, exist_ok=True)
    return model_dir


def download_cached_file(url, check_hash=True, progress=False):
    if isinstance(url, (list, tuple)):
        url, filename = url
    else:
        parts = urlparse(url)
        filename = os.path.basename(parts.path)
    cached_file = os.path.join(get_cache_dir(), filename)
    if not os.path.exists(cached_file):
        _logger.info('Downloading: "{}" to {}\n'.format(url, cached_file))
        hash_prefix = None
        if check_hash:
            r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
            hash_prefix = r.group(1) if r else None
        download_url_to_file(url, cached_file, hash_prefix, progress=progress)
    return cached_file


def check_cached_file(url, check_hash=True):
    if isinstance(url, (list, tuple)):
        url, filename = url
    else:
        parts = urlparse(url)
        filename = os.path.basename(parts.path)
    cached_file = os.path.join(get_cache_dir(), filename)
    if os.path.exists(cached_file):
        if check_hash:
            r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
            hash_prefix = r.group(1) if r else None
            if hash_prefix:
                with open(cached_file, 'rb') as f:
                    hd = hashlib.sha256(f.read()).hexdigest()
                    if hd[:len(hash_prefix)] != hash_prefix:
                        return False
        return True
    return False


def has_hf_hub(necessary=False):
    if not _has_hf_hub and necessary:
        # if no HF Hub module installed, and it is necessary to continue, raise error
        raise RuntimeError(
            'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
    return _has_hf_hub


def hf_split(hf_id):
    # FIXME I may change @ -> # and be parsed as fragment in a URI model name scheme
    rev_split = hf_id.split('@')
    assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.'
    hf_model_id = rev_split[0]
    hf_revision = rev_split[-1] if len(rev_split) > 1 else None
    return hf_model_id, hf_revision


def load_cfg_from_json(json_file: Union[str, os.PathLike]):
    with open(json_file, "r", encoding="utf-8") as reader:
        text = reader.read()
    return json.loads(text)


def download_from_hf(model_id: str, filename: str):
    hf_model_id, hf_revision = hf_split(model_id)
    return hf_hub_download(hf_model_id, filename, revision=hf_revision)


def load_model_config_from_hf(model_id: str):
    assert has_hf_hub(True)
    cached_file = download_from_hf(model_id, 'config.json')

    hf_config = load_cfg_from_json(cached_file)
    if 'pretrained_cfg' not in hf_config:
        # old form, pull pretrain_cfg out of the base dict
        pretrained_cfg = hf_config
        hf_config = {}
        hf_config['architecture'] = pretrained_cfg.pop('architecture')
        hf_config['num_features'] = pretrained_cfg.pop('num_features', None)
        if 'labels' in pretrained_cfg:
            hf_config['label_name'] = pretrained_cfg.pop('labels')
        hf_config['pretrained_cfg'] = pretrained_cfg

    # NOTE currently discarding parent config as only arch name and pretrained_cfg used in timm right now
    pretrained_cfg = hf_config['pretrained_cfg']
    pretrained_cfg['hf_hub_id'] = model_id  # insert hf_hub id for pretrained weight load during model creation
    pretrained_cfg['source'] = 'hf-hub'
    if 'num_classes' in hf_config:
        # model should be created with parent num_classes if they exist
        pretrained_cfg['num_classes'] = hf_config['num_classes']
    model_name = hf_config['architecture']

    return pretrained_cfg, model_name


def load_state_dict_from_hf(model_id: str, filename: str = 'pytorch_model.bin'):
    assert has_hf_hub(True)
    cached_file = download_from_hf(model_id, filename)
    state_dict = torch.load(cached_file, map_location='cpu')
    return state_dict


def save_config_for_hf(model, config_path, model_config=None):
    model_config = model_config or {}
    hf_config = {}
    pretrained_cfg = filter_pretrained_cfg(model.pretrained_cfg, remove_source=True, remove_null=True)
    # set some values at root config level
    hf_config['architecture'] = pretrained_cfg.pop('architecture')
    hf_config['num_classes'] = model_config.get('num_classes', model.num_classes)
    hf_config['num_features'] = model_config.get('num_features', model.num_features)
    global_pool_type = model_config.get('global_pool', getattr(model, 'global_pool', None))
    if isinstance(global_pool_type, str) and global_pool_type:
        hf_config['global_pool'] = global_pool_type

    if 'labels' in model_config:
        _logger.warning(
            "'labels' as a config field for timm models is deprecated. Please use 'label_name' and 'display_name'. "
            "Using provided 'label' field as 'label_name'.")
        model_config['label_name'] = model_config.pop('labels')

    label_name = model_config.pop('label_name', None)
    if label_name:
        assert isinstance(label_name, (dict, list, tuple))
        # map label id (classifier index) -> unique label name (ie synset for ImageNet, MID for OpenImages)
        # can be a dict id: name if there are id gaps, or tuple/list if no gaps.
        hf_config['label_name'] = model_config['label_name']

    display_name = model_config.pop('display_name', None)
    if display_name:
        assert isinstance(display_name, dict)
        # map label_name -> user interface display name
        hf_config['display_name'] = model_config['display_name']

    hf_config['pretrained_cfg'] = pretrained_cfg
    hf_config.update(model_config)

    with config_path.open('w') as f:
        json.dump(hf_config, f, indent=2)


def save_for_hf(model, save_directory, model_config=None):
    assert has_hf_hub(True)
    save_directory = Path(save_directory)
    save_directory.mkdir(exist_ok=True, parents=True)

    weights_path = save_directory / 'pytorch_model.bin'
    torch.save(model.state_dict(), weights_path)

    config_path = save_directory / 'config.json'
    save_config_for_hf(model, config_path, model_config=model_config)


def push_to_hf_hub(
    model,
    repo_id: str,
    commit_message: str = 'Add model',
    token: Optional[str] = None,
    revision: Optional[str] = None,
    private: bool = False,
    create_pr: bool = False,
    model_config: Optional[dict] = None,
    model_card: Optional[dict] = None,
):
    # Create repo if it doesn't exist yet
    repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True)

    # Infer complete repo_id from repo_url
    # Can be different from the input `repo_id` if repo_owner was implicit
    _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
    repo_id = f"{repo_owner}/{repo_name}"

    # Check if README file already exist in repo
    try:
        get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
        has_readme = True
    except EntryNotFoundError:
        has_readme = False

    # Dump model and push to Hub
    with TemporaryDirectory() as tmpdir:
        # Save model weights and config.
        save_for_hf(model, tmpdir, model_config=model_config)

        # Add readme if it does not exist
        if not has_readme:
            model_card = model_card or {}
            model_name = repo_id.split('/')[-1]
            readme_path = Path(tmpdir) / "README.md"
            readme_text = "---\n"
            readme_text += "tags:\n- image-classification\n- timm\n"
            readme_text += "library_tag: timm\n"
            readme_text += f"license: {model_card.get('license', 'apache-2.0')}\n"
            readme_text += "---\n"
            readme_text += f"# Model card for {model_name}\n"
            if 'description' in model_card:
                readme_text += f"\n{model_card['description']}\n"
            if 'details' in model_card:
                readme_text += f"\n## Model Details\n"
                for k, v in model_card['details'].items():
                    readme_text += f"- **{k}:** {v}\n"
            if 'citation' in model_card:
                readme_text += f"\n## Citation\n```\n{model_card['citation']}```\n"
            readme_path.write_text(readme_text)

        # Upload model and return
        return upload_folder(
            repo_id=repo_id,
            folder_path=tmpdir,
            revision=revision,
            create_pr=create_pr,
            commit_message=commit_message,
        )