""" An implementation of RepGhostNet Model as defined in: RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization. https://arxiv.org/abs/2211.06088 Original implementation: https://github.com/ChengpengChen/RepGhost """ import copy from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, Linear, make_divisible from ._builder import build_model_with_cfg from ._efficientnet_blocks import SqueezeExcite, ConvBnAct from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['RepGhostNet'] _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) class RepGhostModule(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, dw_size=3, stride=1, relu=True, reparam=True, ): super(RepGhostModule, self).__init__() self.out_chs = out_chs init_chs = out_chs new_chs = out_chs self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), nn.ReLU(inplace=True) if relu else nn.Identity(), ) fusion_conv = [] fusion_bn = [] if reparam: fusion_conv.append(nn.Identity()) fusion_bn.append(nn.BatchNorm2d(init_chs)) self.fusion_conv = nn.Sequential(*fusion_conv) self.fusion_bn = nn.Sequential(*fusion_bn) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), # nn.ReLU(inplace=True) if relu else nn.Identity(), ) self.relu = nn.ReLU(inplace=False) if relu else nn.Identity() def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) for conv, bn in zip(self.fusion_conv, self.fusion_bn): x2 = x2 + bn(conv(x1)) return self.relu(x2) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.cheap_operation[0], self.cheap_operation[1]) for conv, bn in zip(self.fusion_conv, self.fusion_bn): kernel, bias = self._fuse_bn_tensor(conv, bn, kernel3x3.shape[0], kernel3x3.device) kernel3x3 += self._pad_1x1_to_3x3_tensor(kernel) bias3x3 += bias return kernel3x3, bias3x3 @staticmethod def _pad_1x1_to_3x3_tensor(kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) @staticmethod def _fuse_bn_tensor(conv, bn, in_channels=None, device=None): in_channels = in_channels if in_channels else bn.running_mean.shape[0] device = device if device else bn.weight.device if isinstance(conv, nn.Conv2d): kernel = conv.weight assert conv.bias is None else: assert isinstance(conv, nn.Identity) kernel = torch.ones(in_channels, 1, 1, 1, device=device) if isinstance(bn, nn.BatchNorm2d): running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std assert isinstance(bn, nn.Identity) return kernel, torch.zeros(in_channels).to(kernel.device) def switch_to_deploy(self): if len(self.fusion_conv) == 0 and len(self.fusion_bn) == 0: return kernel, bias = self.get_equivalent_kernel_bias() self.cheap_operation = nn.Conv2d( in_channels=self.cheap_operation[0].in_channels, out_channels=self.cheap_operation[0].out_channels, kernel_size=self.cheap_operation[0].kernel_size, padding=self.cheap_operation[0].padding, dilation=self.cheap_operation[0].dilation, groups=self.cheap_operation[0].groups, bias=True) self.cheap_operation.weight.data = kernel self.cheap_operation.bias.data = bias self.__delattr__('fusion_conv') self.__delattr__('fusion_bn') self.fusion_conv = [] self.fusion_bn = [] def reparameterize(self): self.switch_to_deploy() class RepGhostBottleneck(nn.Module): """ RepGhost bottleneck w/ optional SE""" def __init__( self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0., reparam=True, ): super(RepGhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = RepGhostModule(in_chs, mid_chs, relu=True, reparam=reparam) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) else: self.conv_dw = None self.bn_dw = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None # Point-wise linear projection self.ghost2 = RepGhostModule(mid_chs, out_chs, relu=False, reparam=reparam) # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.conv_dw is not None: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x class RepGhostNet(nn.Module): def __init__( self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2, reparam=True, ): super(RepGhostNet, self).__init__() # setting of inverted residual blocks assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' self.cfgs = cfgs self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] # building first layer stem_chs = make_divisible(16 * width, 4) self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) self.bn1 = nn.BatchNorm2d(stem_chs) self.act1 = nn.ReLU(inplace=True) prev_chs = stem_chs # building inverted residual blocks stages = nn.ModuleList([]) block = RepGhostBottleneck stage_idx = 0 net_stride = 2 for cfg in self.cfgs: layers = [] s = 1 for k, exp_size, c, se_ratio, s in cfg: out_chs = make_divisible(c * width, 4) mid_chs = make_divisible(exp_size * width, 4) layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, reparam=reparam)) prev_chs = out_chs if s > 1: net_stride *= 2 self.feature_info.append(dict( num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) stages.append(nn.Sequential(*layers)) stage_idx += 1 out_chs = make_divisible(exp_size * width * 2, 4) stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) self.pool_dim = prev_chs = out_chs self.blocks = nn.Sequential(*stages) # building last several layers self.num_features = out_chs = 1280 self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) self.act2 = nn.ReLU(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^conv_stem|bn1', blocks=[ (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), (r'conv_head', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x def forward_head(self, x): x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) x = self.classifier(x) return x def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def convert_to_deploy(self): repghost_model_convert(self, do_copy=False) def repghost_model_convert(model: torch.nn.Module, save_path=None, do_copy=True): """ taken from from https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py """ if do_copy: model = copy.deepcopy(model) for module in model.modules(): if hasattr(module, 'switch_to_deploy'): module.switch_to_deploy() if save_path is not None: torch.save(model.state_dict(), save_path) return model def _create_repghostnet(variant, width=1.0, pretrained=False, **kwargs): """ Constructs a RepGhostNet model """ cfgs = [ # k, t, c, SE, s # stage1 [[3, 8, 16, 0, 1]], # stage2 [[3, 24, 24, 0, 2]], [[3, 36, 24, 0, 1]], # stage3 [[5, 36, 40, 0.25, 2]], [[5, 60, 40, 0.25, 1]], # stage4 [[3, 120, 80, 0, 2]], [[3, 100, 80, 0, 1], [3, 120, 80, 0, 1], [3, 120, 80, 0, 1], [3, 240, 112, 0.25, 1], [3, 336, 112, 0.25, 1] ], # stage5 [[5, 336, 160, 0.25, 2]], [[5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1], [5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1] ] ] model_kwargs = dict( cfgs=cfgs, width=width, **kwargs, ) return build_model_with_cfg( RepGhostNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), **model_kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = generate_default_cfgs({ 'repghostnet_050.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_5x_43M_66.95.pth.tar' ), 'repghostnet_058.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_58x_60M_68.94.pth.tar' ), 'repghostnet_080.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_8x_96M_72.24.pth.tar' ), 'repghostnet_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_0x_142M_74.22.pth.tar' ), 'repghostnet_111.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_11x_170M_75.07.pth.tar' ), 'repghostnet_130.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_3x_231M_76.37.pth.tar' ), 'repghostnet_150.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_5x_301M_77.45.pth.tar' ), 'repghostnet_200.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_2_0x_516M_78.81.pth.tar' ), }) @register_model def repghostnet_050(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.5x """ model = _create_repghostnet('repghostnet_050', width=0.5, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_058(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.58x """ model = _create_repghostnet('repghostnet_058', width=0.58, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_080(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.8x """ model = _create_repghostnet('repghostnet_080', width=0.8, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_100(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.0x """ model = _create_repghostnet('repghostnet_100', width=1.0, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_111(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.11x """ model = _create_repghostnet('repghostnet_111', width=1.11, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_130(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.3x """ model = _create_repghostnet('repghostnet_130', width=1.3, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_150(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.5x """ model = _create_repghostnet('repghostnet_150', width=1.5, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_200(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-2.0x """ model = _create_repghostnet('repghostnet_200', width=2.0, pretrained=pretrained, **kwargs) return model