""" EfficientNet, MobileNetV3, etc Blocks

Hacked together by / Copyright 2020 Ross Wightman
"""

import torch
import torch.nn as nn
from torch.nn import functional as F

from .layers import create_conv2d, drop_path, get_act_layer
from .layers.activations import sigmoid

# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per
# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay)
# NOTE: momentum varies btw .99 and .9997 depending on source
# .99 in official TF TPU impl
# .9997 (/w .999 in search space) for paper
BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
BN_EPS_TF_DEFAULT = 1e-3
_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT)


def get_bn_args_tf():
    return _BN_ARGS_TF.copy()


def resolve_bn_args(kwargs):
    bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {}
    bn_momentum = kwargs.pop('bn_momentum', None)
    if bn_momentum is not None:
        bn_args['momentum'] = bn_momentum
    bn_eps = kwargs.pop('bn_eps', None)
    if bn_eps is not None:
        bn_args['eps'] = bn_eps
    return bn_args


_SE_ARGS_DEFAULT = dict(
    gate_fn=sigmoid,
    act_layer=None,
    reduce_mid=False,
    divisor=1)


def resolve_se_args(kwargs, in_chs, act_layer=None):
    se_kwargs = kwargs.copy() if kwargs is not None else {}
    # fill in args that aren't specified with the defaults
    for k, v in _SE_ARGS_DEFAULT.items():
        se_kwargs.setdefault(k, v)
    # some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch
    if not se_kwargs.pop('reduce_mid'):
        se_kwargs['reduced_base_chs'] = in_chs
    # act_layer override, if it remains None, the containing block's act_layer will be used
    if se_kwargs['act_layer'] is None:
        assert act_layer is not None
        se_kwargs['act_layer'] = act_layer
    return se_kwargs


def resolve_act_layer(kwargs, default='relu'):
    act_layer = kwargs.pop('act_layer', default)
    if isinstance(act_layer, str):
        act_layer = get_act_layer(act_layer)
    return act_layer


def make_divisible(v, divisor=8, min_value=None):
    min_value = min_value or divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
    """Round number of filters based on depth multiplier."""
    if not multiplier:
        return channels
    channels *= multiplier
    return make_divisible(channels, divisor, channel_min)


class ChannelShuffle(nn.Module):
    # FIXME haven't used yet
    def __init__(self, groups):
        super(ChannelShuffle, self).__init__()
        self.groups = groups

    def forward(self, x):
        """Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]"""
        N, C, H, W = x.size()
        g = self.groups
        assert C % g == 0, "Incompatible group size {} for input channel {}".format(
            g, C
        )
        return (
            x.view(N, g, int(C / g), H, W)
            .permute(0, 2, 1, 3, 4)
            .contiguous()
            .view(N, C, H, W)
        )


class SqueezeExcite(nn.Module):
    def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
                 act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1, **_):
        super(SqueezeExcite, self).__init__()
        reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
        self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
        self.act1 = act_layer(inplace=True)
        self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
        self.gate_fn = gate_fn

    def forward(self, x):
        x_se = x.mean((2, 3), keepdim=True)
        x_se = self.conv_reduce(x_se)
        x_se = self.act1(x_se)
        x_se = self.conv_expand(x_se)
        return x * self.gate_fn(x_se)


class ConvBnAct(nn.Module):
    def __init__(self, in_chs, out_chs, kernel_size,
                 stride=1, dilation=1, pad_type='', act_layer=nn.ReLU,
                 norm_layer=nn.BatchNorm2d, norm_kwargs=None):
        super(ConvBnAct, self).__init__()
        norm_kwargs = norm_kwargs or {}
        self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type)
        self.bn1 = norm_layer(out_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

    def feature_info(self, location):
        if location == 'expansion':  # output of conv after act, same as block coutput
            info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels)
        else:  # location == 'bottleneck', block output
            info = dict(module='', hook_type='', num_chs=self.conv.out_channels)
        return info

    def forward(self, x):
        x = self.conv(x)
        x = self.bn1(x)
        x = self.act1(x)
        return x


class DepthwiseSeparableConv(nn.Module):
    """ DepthwiseSeparable block
    Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion
    (factor of 1.0). This is an alternative to having a IR with an optional first pw conv.
    """
    def __init__(self, in_chs, out_chs, dw_kernel_size=3,
                 stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False,
                 pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None,
                 norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0.):
        super(DepthwiseSeparableConv, self).__init__()
        norm_kwargs = norm_kwargs or {}
        has_se = se_ratio is not None and se_ratio > 0.
        self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
        self.has_pw_act = pw_act  # activation after point-wise conv
        self.drop_path_rate = drop_path_rate

        self.conv_dw = create_conv2d(
            in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True)
        self.bn1 = norm_layer(in_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

        # Squeeze-and-excitation
        if has_se:
            se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
            self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs)
        else:
            self.se = None

        self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
        self.bn2 = norm_layer(out_chs, **norm_kwargs)
        self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity()

    def feature_info(self, location):
        if location == 'expansion':  # after SE, input to PW
            info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
        else:  # location == 'bottleneck', block output
            info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels)
        return info

    def forward(self, x):
        residual = x

        x = self.conv_dw(x)
        x = self.bn1(x)
        x = self.act1(x)

        if self.se is not None:
            x = self.se(x)

        x = self.conv_pw(x)
        x = self.bn2(x)
        x = self.act2(x)

        if self.has_residual:
            if self.drop_path_rate > 0.:
                x = drop_path(x, self.drop_path_rate, self.training)
            x += residual
        return x


class InvertedResidual(nn.Module):
    """ Inverted residual block w/ optional SE

    Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often
    referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in
      * MNasNet - https://arxiv.org/abs/1807.11626
      * EfficientNet - https://arxiv.org/abs/1905.11946
      * MobileNet-V3 - https://arxiv.org/abs/1905.02244
    """

    def __init__(self, in_chs, out_chs, dw_kernel_size=3,
                 stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False,
                 exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
                 se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
                 conv_kwargs=None, drop_path_rate=0.):
        super(InvertedResidual, self).__init__()
        norm_kwargs = norm_kwargs or {}
        conv_kwargs = conv_kwargs or {}
        mid_chs = make_divisible(in_chs * exp_ratio)
        has_se = se_ratio is not None and se_ratio > 0.
        self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
        self.drop_path_rate = drop_path_rate

        # Point-wise expansion
        self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
        self.bn1 = norm_layer(mid_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

        # Depth-wise convolution
        self.conv_dw = create_conv2d(
            mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation,
            padding=pad_type, depthwise=True, **conv_kwargs)
        self.bn2 = norm_layer(mid_chs, **norm_kwargs)
        self.act2 = act_layer(inplace=True)

        # Squeeze-and-excitation
        if has_se:
            se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
            self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
        else:
            self.se = None

        # Point-wise linear projection
        self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
        self.bn3 = norm_layer(out_chs, **norm_kwargs)

    def feature_info(self, location):
        if location == 'expansion':  # after SE, input to PWL
            info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
        else:  # location == 'bottleneck', block output
            info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels)
        return info

    def forward(self, x):
        residual = x

        # Point-wise expansion
        x = self.conv_pw(x)
        x = self.bn1(x)
        x = self.act1(x)

        # Depth-wise convolution
        x = self.conv_dw(x)
        x = self.bn2(x)
        x = self.act2(x)

        # Squeeze-and-excitation
        if self.se is not None:
            x = self.se(x)

        # Point-wise linear projection
        x = self.conv_pwl(x)
        x = self.bn3(x)

        if self.has_residual:
            if self.drop_path_rate > 0.:
                x = drop_path(x, self.drop_path_rate, self.training)
            x += residual

        return x


class CondConvResidual(InvertedResidual):
    """ Inverted residual block w/ CondConv routing"""

    def __init__(self, in_chs, out_chs, dw_kernel_size=3,
                 stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False,
                 exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
                 se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
                 num_experts=0, drop_path_rate=0.):

        self.num_experts = num_experts
        conv_kwargs = dict(num_experts=self.num_experts)

        super(CondConvResidual, self).__init__(
            in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, pad_type=pad_type,
            act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size,
            pw_kernel_size=pw_kernel_size, se_ratio=se_ratio, se_kwargs=se_kwargs,
            norm_layer=norm_layer, norm_kwargs=norm_kwargs, conv_kwargs=conv_kwargs,
            drop_path_rate=drop_path_rate)

        self.routing_fn = nn.Linear(in_chs, self.num_experts)

    def forward(self, x):
        residual = x

        # CondConv routing
        pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)
        routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))

        # Point-wise expansion
        x = self.conv_pw(x, routing_weights)
        x = self.bn1(x)
        x = self.act1(x)

        # Depth-wise convolution
        x = self.conv_dw(x, routing_weights)
        x = self.bn2(x)
        x = self.act2(x)

        # Squeeze-and-excitation
        if self.se is not None:
            x = self.se(x)

        # Point-wise linear projection
        x = self.conv_pwl(x, routing_weights)
        x = self.bn3(x)

        if self.has_residual:
            if self.drop_path_rate > 0.:
                x = drop_path(x, self.drop_path_rate, self.training)
            x += residual
        return x


class EdgeResidual(nn.Module):
    """ Residual block with expansion convolution followed by pointwise-linear w/ stride

    Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML`
        - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html

    This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers
      * MobileDet - https://arxiv.org/abs/2004.14525
      * EfficientNet-X - https://arxiv.org/abs/2102.05610
      * EfficientNet-V2 - https://arxiv.org/abs/2104.00298
    """

    def __init__(self, in_chs, out_chs, exp_kernel_size=3, exp_ratio=1.0, fake_in_chs=0,
                 stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1,
                 se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
                 drop_path_rate=0.):
        super(EdgeResidual, self).__init__()
        norm_kwargs = norm_kwargs or {}
        if fake_in_chs > 0:
            mid_chs = make_divisible(fake_in_chs * exp_ratio)
        else:
            mid_chs = make_divisible(in_chs * exp_ratio)
        has_se = se_ratio is not None and se_ratio > 0.
        self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
        self.drop_path_rate = drop_path_rate

        # Expansion convolution
        self.conv_exp = create_conv2d(
            in_chs, mid_chs, exp_kernel_size, stride=stride, dilation=dilation, padding=pad_type)
        self.bn1 = norm_layer(mid_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

        # Squeeze-and-excitation
        if has_se:
            se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
            self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
        else:
            self.se = None

        # Point-wise linear projection
        self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type)
        self.bn2 = norm_layer(out_chs, **norm_kwargs)

    def feature_info(self, location):
        if location == 'expansion':  # after SE, before PWL
            info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
        else:  # location == 'bottleneck', block output
            info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels)
        return info

    def forward(self, x):
        residual = x

        # Expansion convolution
        x = self.conv_exp(x)
        x = self.bn1(x)
        x = self.act1(x)

        # Squeeze-and-excitation
        if self.se is not None:
            x = self.se(x)

        # Point-wise linear projection
        x = self.conv_pwl(x)
        x = self.bn2(x)

        if self.has_residual:
            if self.drop_path_rate > 0.:
                x = drop_path(x, self.drop_path_rate, self.training)
            x += residual

        return x