# EfficientNet (Knapsack Pruned) **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). This collection consists of pruned EfficientNet models. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('efficientnet_b1_pruned', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `efficientnet_b1_pruned`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('efficientnet_b1_pruned', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ``` @misc{aflalo2020knapsack, title={Knapsack Pruning with Inner Distillation}, author={Yonathan Aflalo and Asaf Noy and Ming Lin and Itamar Friedman and Lihi Zelnik}, year={2020}, eprint={2002.08258}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Pruned Paper: Title: Knapsack Pruning with Inner Distillation URL: https://paperswithcode.com/paper/knapsack-pruning-with-inner-distillation Models: - Name: efficientnet_b1_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 489653114 Parameters: 6330000 File Size: 25595162 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1_pruned Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1208 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb1_pruned_9ebb3fe6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 93.84% - Name: efficientnet_b2_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 878133915 Parameters: 8310000 File Size: 33555005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2_pruned Crop Pct: '0.89' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1219 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb2_pruned_203f55bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.86% - Name: efficientnet_b3_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 1239590641 Parameters: 9860000 File Size: 39770812 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3_pruned Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1230 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.86% Top 5 Accuracy: 95.24% -->