""" EVA EVA from https://github.com/baaivision/EVA , paper: https://arxiv.org/abs/2211.07636 @article{EVA, title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale}, author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue}, journal={arXiv preprint arXiv:2211.07636}, year={2022} } EVA-02: A Visual Representation for Neon Genesis - https://arxiv.org/abs/2303.11331 @article{EVA02, title={EVA-02: A Visual Representation for Neon Genesis}, author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue}, journal={arXiv preprint arXiv:2303.11331}, year={2023} } This file contains EVA & EVA02 model implementations evolved from BEiT, additional models in vision_transformer.py. Modifications by / Copyright 2023 Ross Wightman, original copyrights below """ # EVA models Copyright (c) 2022 BAAI-Vision # EVA02 models Copyright (c) 2023 BAAI-Vision import math from functools import partial from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD from timm.layers import PatchEmbed, Mlp, GluMlp, SwiGLU, LayerNorm, DropPath, PatchDropout, RotaryEmbeddingCat, \ apply_rot_embed_cat, apply_keep_indices_nlc, trunc_normal_, resample_patch_embed, resample_abs_pos_embed, \ global_pool_nlc, to_2tuple, use_fused_attn, AttentionRope, AttentionPoolLatent from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint from ._registry import generate_default_cfgs, register_model __all__ = ['Eva'] class EvaAttention(nn.Module): """ EVA Attention with ROPE, no k-bias, and fused/unfused qkv options """ fused_attn: torch.jit.Final[bool] def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, qkv_fused: bool = True, qkv_bias_separate: bool = False, num_prefix_tokens: int = 1, attn_drop: float = 0., proj_drop: float = 0., attn_head_dim: Optional[int] = None, norm_layer: Optional[Callable] = None, qk_norm: bool = False, scale_norm: bool = True, ): """ Args: dim: Input dimension of the token embeddings num_heads: Number of attention heads qkv_bias: Whether to add a bias term to the query, key, and value projections qkv_fused: Whether qkv projections are fused into one projection or separate qkv_bias_separate: Whether to apply bias to qkv as a separate addition or part of F.linear() call num_prefix_tokens: Number of reg/cls tokens at the beginning of the sequence that should not have position embeddings applied attn_drop: Dropout rate for attention weights proj_drop: Dropout rate for the output projection attn_head_dim: Dimension of each attention head (if None, computed as dim // num_heads) norm_layer: Normalization layer constructor to use for QK and scale normalization qk_norm: Enable normalization of query (Q) and key (K) vectors with norm_layer scale_norm: Enable normalization (scaling) of attention output with norm_layer """ super().__init__() if scale_norm or qk_norm: assert norm_layer is not None, 'norm_layer must be provided if qk_norm or scale_norm is True' self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim attn_dim = head_dim * self.num_heads self.scale = head_dim ** -0.5 self.num_prefix_tokens = num_prefix_tokens self.fused_attn = use_fused_attn() self.qkv_bias_separate = qkv_bias_separate if qkv_fused: self.qkv = nn.Linear(dim, attn_dim * 3, bias=False) self.q_proj = self.k_proj = self.v_proj = None if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(attn_dim)) self.register_buffer('k_bias', torch.zeros(attn_dim), persistent=False) self.v_bias = nn.Parameter(torch.zeros(attn_dim)) else: self.q_bias = self.k_bias = self.v_bias = None else: self.q_proj = nn.Linear(dim, attn_dim, bias=qkv_bias) self.k_proj = nn.Linear(dim, attn_dim, bias=False) self.v_proj = nn.Linear(dim, attn_dim, bias=qkv_bias) self.qkv = None self.q_bias = self.k_bias = self.v_bias = None self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.norm = norm_layer(attn_dim) if scale_norm else nn.Identity() self.proj = nn.Linear(attn_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward( self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, ): """Forward pass for the attention module. Args: x: Input tensor of shape (batch_size, sequence_length, embedding_dim) rope: Rotary position embeddings tensor for position-aware attention attn_mask: Optional attention mask to apply during attention computation Returns: Tensor of shape (batch_size, sequence_length, embedding_dim) """ B, N, C = x.shape if self.qkv is not None: if self.q_bias is None: qkv = self.qkv(x) else: qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.qkv_bias_separate: qkv = self.qkv(x) qkv += qkv_bias else: qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # B, num_heads, N, head_dim else: q = self.q_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) # B, num_heads, N, C k = self.k_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) v = self.v_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) q, k = self.q_norm(q), self.k_norm(k) if rope is not None: npt = self.num_prefix_tokens q = torch.cat([q[:, :, :npt, :], apply_rot_embed_cat(q[:, :, npt:, :], rope)], dim=2).type_as(v) k = torch.cat([k[:, :, :npt, :], apply_rot_embed_cat(k[:, :, npt:, :], rope)], dim=2).type_as(v) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = (q @ k.transpose(-2, -1)) if attn_mask is not None: attn_mask = attn_mask.to(torch.bool) attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.norm(x) x = self.proj(x) x = self.proj_drop(x) return x class EvaBlock(nn.Module): def __init__( self, dim: int, num_heads: int, qkv_bias: bool = True, qkv_fused: bool = True, mlp_ratio: float = 4., swiglu_mlp: bool = False, scale_mlp: bool = False, scale_attn_inner: bool = False, num_prefix_tokens: int = 1, attn_type: str = 'eva', proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., init_values: Optional[float] = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, attn_head_dim: Optional[int] = None, ): """ Initialize the EVA transformer block. Args: dim: Input dimension of the token embeddings num_heads: Number of attention heads qkv_bias: Whether to use bias terms in query, key, value projections qkv_fused: Whether to use a single projection for query, key, value mlp_ratio: Ratio of MLP hidden dimension to input dimension swiglu_mlp: Whether to use SwiGLU activation in the MLP scale_mlp: Whether to use normalization in the MLP scale_attn_inner: Whether to use normalization within the attention mechanism num_prefix_tokens: Number of tokens at the beginning of the sequence (class tokens, etc.) attn_type: Type of attention module to use ('eva' or 'rope') proj_drop: Dropout rate for projection layers attn_drop: Dropout rate for attention matrix drop_path: Stochastic depth rate init_values: Initial value for LayerScale, None = no LayerScale act_layer: Activation layer constructor norm_layer: Normalization layer constructor attn_head_dim: Dimension of each attention head (if None, computed as dim // num_heads) """ super().__init__() self.norm1 = norm_layer(dim) attn_cls = AttentionRope if attn_type == 'rope' else EvaAttention self.attn = attn_cls( dim, num_heads=num_heads, qkv_bias=qkv_bias, qkv_fused=qkv_fused, num_prefix_tokens=num_prefix_tokens, attn_drop=attn_drop, proj_drop=proj_drop, attn_head_dim=attn_head_dim, norm_layer=norm_layer, scale_norm=scale_attn_inner, ) self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) hidden_features = int(dim * mlp_ratio) if swiglu_mlp: if scale_mlp: # when norm in SwiGLU used, an impl with separate fc for gate & x is used self.mlp = SwiGLU( in_features=dim, hidden_features=hidden_features, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop, ) else: # w/o any extra norm, an impl with packed weights is used, matches existing GluMLP self.mlp = GluMlp( in_features=dim, hidden_features=hidden_features * 2, norm_layer=norm_layer if scale_mlp else None, act_layer=nn.SiLU, gate_last=False, drop=proj_drop, ) else: self.mlp = Mlp( in_features=dim, hidden_features=hidden_features, act_layer=act_layer, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop, ) self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None): if self.gamma_1 is None: x = x + self.drop_path1(self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) x = x + self.drop_path2(self.mlp(self.norm2(x))) else: x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) return x class EvaBlockPostNorm(nn.Module): """ EVA block w/ post-norm and support for swiglu, MLP norm scale, ROPE. """ def __init__( self, dim: int, num_heads: int, qkv_bias: bool = True, qkv_fused: bool = True, mlp_ratio: float = 4., attn_type: str = 'eva', swiglu_mlp: bool = False, scale_mlp: bool = False, scale_attn_inner: bool = False, num_prefix_tokens: int = 1, proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., init_values: Optional[float] = None, # ignore for post-norm act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, attn_head_dim: Optional[int] = None, ): """ Initialize the post-norm EVA transformer block. Args: dim: Input dimension of the token embeddings num_heads: Number of attention heads qkv_bias: Whether to use bias terms in query, key, value projections qkv_fused: Whether to use a single projection for query, key, value mlp_ratio: Ratio of MLP hidden dimension to input dimension swiglu_mlp: Whether to use SwiGLU activation in the MLP scale_mlp: Whether to use normalization in the MLP scale_attn_inner: Whether to use normalization within the attention mechanism num_prefix_tokens: Number of tokens at the beginning of the sequence (class tokens, etc.) attn_type: Type of attention module to use ('eva' or 'rope') proj_drop: Dropout rate for projection layers attn_drop: Dropout rate for attention matrix drop_path: Stochastic depth rate init_values: Initial value for LayerScale, None = no LayerScale (NOTE: ignored for post-norm block) act_layer: Activation layer constructor norm_layer: Normalization layer constructor attn_head_dim: Dimension of each attention head (if None, computed as dim // num_heads) """ super().__init__() attn_cls = AttentionRope if attn_type == 'rope' else EvaAttention self.attn = attn_cls( dim, num_heads=num_heads, qkv_bias=qkv_bias, qkv_fused=qkv_fused, num_prefix_tokens=num_prefix_tokens, attn_drop=attn_drop, proj_drop=proj_drop, attn_head_dim=attn_head_dim, norm_layer=norm_layer, scale_norm=scale_attn_inner, ) self.norm1 = norm_layer(dim) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() hidden_features = int(dim * mlp_ratio) if swiglu_mlp: if scale_mlp: # when norm in SwiGLU used, an impl with separate fc for gate & x is used self.mlp = SwiGLU( in_features=dim, hidden_features=hidden_features, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop, ) else: # w/o any extra norm, an impl with packed fc1 weights is used, matches existing GluMLP self.mlp = GluMlp( in_features=dim, hidden_features=hidden_features * 2, norm_layer=norm_layer if scale_mlp else None, act_layer=nn.SiLU, gate_last=False, drop=proj_drop, ) else: self.mlp = Mlp( in_features=dim, hidden_features=hidden_features, act_layer=act_layer, norm_layer=norm_layer if scale_mlp else None, drop=proj_drop, ) self.norm2 = norm_layer(dim) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None): x = x + self.drop_path1(self.norm1(self.attn(x, rope=rope, attn_mask=attn_mask))) x = x + self.drop_path2(self.norm2(self.mlp(x))) return x class Eva(nn.Module): """ Eva Vision Transformer w/ Abs & Rotary Pos Embed This class implements the EVA and EVA02 models that were based on the BEiT ViT variant * EVA - abs pos embed, global avg pool * EVA02 - abs + rope pos embed, global avg pool, SwiGLU, scale Norm in MLP (ala normformer) """ def __init__( self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool = True, qkv_fused: bool = True, mlp_ratio: float = 4., swiglu_mlp: bool = False, scale_mlp: bool = False, scale_attn_inner: bool = False, attn_type: str = 'eva', drop_rate: float = 0., pos_drop_rate: float = 0., patch_drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., norm_layer: Callable = LayerNorm, init_values: Optional[float] = None, class_token: bool = True, num_reg_tokens: int = 0, use_abs_pos_emb: bool = True, use_rot_pos_emb: bool = False, rope_grid_offset: float = 0., rope_grid_indexing: str = 'ij', use_post_norm: bool = False, use_pre_transformer_norm: bool = False, use_post_transformer_norm: Optional[bool] = None, use_fc_norm: Optional[bool] = None, attn_pool_num_heads: Optional[int] = None, attn_pool_mlp_ratio: Optional[float] = None, dynamic_img_size: bool = False, dynamic_img_pad: bool = False, ref_feat_shape: Optional[Union[Tuple[int, int], int]] = None, head_init_scale: float = 0.001, ): """Initialize the EVA Vision Transformer model. Args: img_size: Input image size (single int for square, or tuple for rectangular) patch_size: Patch size to divide image into tokens (single int for square, or tuple) in_chans: Number of input image channels num_classes: Number of classes (output dim) for classification head (final projection), 0 for pass-through global_pool: Type of global pooling for final sequence ('avg', 'token', 'map', etc.) embed_dim: Embedding dimension for tokens depth: Number of transformer blocks num_heads: Number of attention heads qkv_bias: Enable bias for query, key, value projections qkv_fused: Use a single projection for query, key, value mlp_ratio: Ratio of mlp hidden dim to embedding dim swiglu_mlp: Use SwiGLU activation in MLP scale_mlp: Apply scaling normalization in MLP (normformer style) scale_attn_inner: Apply scaling normalization inside attention attn_type: Type of attention module to use drop_rate: Dropout rate after final projection and pooling pos_drop_rate: Dropout rate for positional embeddings patch_drop_rate: Rate of dropping patches during training proj_drop_rate: Dropout rate for projections attn_drop_rate: Dropout rate for attention drop_path_rate: Stochastic depth rate norm_layer: Normalization layer constructor init_values: Initial layer-scale values class_token: Use class token num_reg_tokens: Number of additional learnable 'register' tokens to add to the sequence use_abs_pos_emb: Use absolute (learned) positional embeddings use_rot_pos_emb: Use rotary position embeddings rope_grid_offset: Offset for rotary position embedding grid rope_grid_indexing: Indexing mode for rotary position embeddings ('ij' or 'xy') use_post_norm: Use post-norm transformer block type use_pre_transformer_norm: Use normalization layer before transformer blocks use_post_transformer_norm: Use normalization layer after transformer blocks use_fc_norm: Use normalization layer after pooling, before final classifier attn_pool_num_heads: Number of heads in attention pooling attn_pool_mlp_ratio: MLP ratio in attention pooling dynamic_img_size: Support dynamic image sizes in forward pass dynamic_img_pad: Apply dynamic padding for irregular image sizes ref_feat_shape: Reference feature shape for rotary position embedding scale head_init_scale: Initialization scale for classification head weights """ super().__init__() assert global_pool in ('', 'avg', 'avgmax', 'max', 'token', 'map') self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models self.num_prefix_tokens = (1 if class_token else 0) + num_reg_tokens self.dynamic_img_size = dynamic_img_size self.grad_checkpointing = False # resolve norm / pool usage activate_pre_norm = use_pre_transformer_norm if use_fc_norm is not None: activate_fc_norm = use_fc_norm # pass through if explicit else: activate_fc_norm = global_pool == 'avg' # default on if avg pool used if use_post_transformer_norm is not None: activate_post_norm = use_post_transformer_norm # pass through if explicit else: activate_post_norm = not activate_fc_norm # default on if fc_norm isn't active embed_args = {} if dynamic_img_size: # flatten deferred until after pos embed embed_args.update(dict(strict_img_size=False, output_fmt='NHWC')) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, dynamic_img_pad=dynamic_img_pad, bias=not use_pre_transformer_norm, **embed_args, ) num_patches = self.patch_embed.num_patches r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None self.reg_token = nn.Parameter(torch.zeros(1, num_reg_tokens, embed_dim)) if num_reg_tokens else None self.cls_embed = class_token and self.reg_token is None self.pos_embed = nn.Parameter( torch.zeros(1, num_patches + self.num_prefix_tokens, embed_dim)) if use_abs_pos_emb else None self.pos_drop = nn.Dropout(p=pos_drop_rate) if patch_drop_rate > 0: self.patch_drop = PatchDropout( patch_drop_rate, num_prefix_tokens=self.num_prefix_tokens, return_indices=True, ) else: self.patch_drop = None if use_rot_pos_emb: ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None self.rope = RotaryEmbeddingCat( embed_dim // num_heads, in_pixels=False, feat_shape=None if dynamic_img_size else self.patch_embed.grid_size, ref_feat_shape=ref_feat_shape, grid_offset=rope_grid_offset, grid_indexing=rope_grid_indexing, ) else: self.rope = None self.norm_pre = norm_layer(embed_dim) if activate_pre_norm else nn.Identity() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule block_fn = EvaBlockPostNorm if use_post_norm else EvaBlock self.blocks = nn.ModuleList([ block_fn( dim=embed_dim, num_heads=num_heads, qkv_bias=qkv_bias, qkv_fused=qkv_fused, mlp_ratio=mlp_ratio, swiglu_mlp=swiglu_mlp, scale_mlp=scale_mlp, scale_attn_inner=scale_attn_inner, attn_type=attn_type, num_prefix_tokens=self.num_prefix_tokens, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, ) for i in range(depth)]) self.feature_info = [ dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] self.norm = norm_layer(embed_dim) if activate_post_norm else nn.Identity() if global_pool == 'map': attn_pool_num_heads = attn_pool_num_heads or num_heads attn_pool_mlp_ratio = attn_pool_mlp_ratio or mlp_ratio self.attn_pool = AttentionPoolLatent( self.embed_dim, num_heads=attn_pool_num_heads, mlp_ratio=attn_pool_mlp_ratio, norm_layer=norm_layer, act_layer=nn.GELU, ) else: self.attn_pool = None self.fc_norm = norm_layer(embed_dim) if activate_fc_norm else nn.Identity() self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) if self.cls_token is not None: trunc_normal_(self.cls_token, std=.02) if self.reg_token is not None: trunc_normal_(self.reg_token, std=.02) self.fix_init_weight() if isinstance(self.head, nn.Linear): trunc_normal_(self.head.weight, std=.02) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.zeros_(m.bias) @torch.jit.ignore def no_weight_decay(self): nwd = {'pos_embed', 'cls_token'} return nwd @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))], ) return matcher @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def _pos_embed(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: if self.dynamic_img_size: B, H, W, C = x.shape if self.pos_embed is not None: prev_grid_size = self.patch_embed.grid_size pos_embed = resample_abs_pos_embed( self.pos_embed, new_size=(H, W), old_size=prev_grid_size, num_prefix_tokens=self.num_prefix_tokens, ) else: pos_embed = None x = x.view(B, -1, C) rot_pos_embed = self.rope.get_embed(shape=(H, W)) if self.rope is not None else None else: pos_embed = self.pos_embed rot_pos_embed = self.rope.get_embed() if self.rope is not None else None if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) if pos_embed is not None: x = x + pos_embed if self.reg_token is not None: to_cat = [] if self.cls_token is not None: to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) x = torch.cat(to_cat + [x], dim=1) x = self.pos_drop(x) # obtain shared rotary position embedding and apply patch dropout if self.patch_drop is not None: x, keep_indices = self.patch_drop(x) if rot_pos_embed is not None and keep_indices is not None: rot_pos_embed = apply_keep_indices_nlc(x, rot_pos_embed, keep_indices) return x, rot_pos_embed def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, return_prefix_tokens: bool = False, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if an int, if is a sequence, select by matching indices return_prefix_tokens: Return both prefix and spatial intermediate tokens norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features """ assert output_fmt in ('NCHW', 'NLC'), 'Output format for EVA-ViT features must be one of NCHW or NLC.' reshape = output_fmt == 'NCHW' intermediates = [] take_indices, max_index = feature_take_indices(len(self.blocks), indices) # forward pass B, _, height, width = x.shape x = self.patch_embed(x) x, rot_pos_embed = self._pos_embed(x) x = self.norm_pre(x) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript blocks = self.blocks else: blocks = self.blocks[:max_index + 1] for i, blk in enumerate(blocks): x = blk(x, rope=rot_pos_embed) if i in take_indices: intermediates.append(self.norm(x) if norm else x) # process intermediates if self.num_prefix_tokens: # split prefix (e.g. class, distill) and spatial feature tokens prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] if reshape: # reshape to BCHW output format H, W = self.patch_embed.dynamic_feat_size((height, width)) intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] if not torch.jit.is_scripting() and return_prefix_tokens: # return_prefix not support in torchscript due to poor type handling intermediates = list(zip(intermediates, prefix_tokens)) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.blocks), indices) self.blocks = self.blocks[:max_index + 1] # truncate blocks if prune_norm: self.norm = nn.Identity() if prune_head: self.attn_pool = None self.fc_norm = nn.Identity() self.reset_classifier(0, '') return take_indices def pool(self, x: torch.Tensor, pool_type: Optional[str] = None) -> torch.Tensor: if self.attn_pool is not None: x = self.attn_pool(x) return x pool_type = self.global_pool if pool_type is None else pool_type x = global_pool_nlc(x, pool_type=pool_type, num_prefix_tokens=self.num_prefix_tokens) return x def forward_features(self, x): x = self.patch_embed(x) x, rot_pos_embed = self._pos_embed(x) x = self.norm_pre(x) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x, rope=rot_pos_embed) else: x = blk(x, rope=rot_pos_embed) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): x = self.pool(x) x = self.fc_norm(x) x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _convert_pe( state_dict, model, prefix: str = 'visual.', ): """ Convert Perception Encoder weights """ state_dict = state_dict.get('model', state_dict) state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} out_dict = {} swaps = [ ('conv1', 'patch_embed.proj'), ('positional_embedding', 'pos_embed'), ('transformer.resblocks.', 'blocks.'), ('ln_pre', 'norm_pre'), ('ln_post', 'norm'), ('ln_', 'norm'), ('ls_1.gamma', 'gamma_1'), ('ls_2.gamma', 'gamma_2'), ('in_proj_', 'qkv.'), ('out_proj', 'proj'), ('mlp.c_fc', 'mlp.fc1'), ('mlp.c_proj', 'mlp.fc2'), ] len_prefix = len(prefix) for k, v in state_dict.items(): if prefix: if not k.startswith(prefix): continue k = k[len_prefix:] for sp in swaps: k = k.replace(sp[0], sp[1]) if k.startswith('attn_pool'): k = k.replace('attn_pool.attn', 'attn_pool') k = k.replace('attn_pool.layernorm', 'attn_pool.norm') k = k.replace('attn_pool.probe', 'attn_pool.latent') if k.startswith('attn_pool.qkv'): dim = v.shape[0] // 3 if k.endswith('weight'): out_dict['attn_pool.q.weight'] = v[:dim] out_dict['attn_pool.kv.weight'] = v[dim:] elif k.endswith('bias'): out_dict['attn_pool.q.bias'] = v[:dim] out_dict['attn_pool.kv.bias'] = v[dim:] continue elif k == 'proj': k = 'head.weight' v = v.transpose(0, 1) out_dict['head.bias'] = torch.zeros(v.shape[0]) elif k == 'class_embedding': k = 'cls_token' v = v.unsqueeze(0).unsqueeze(1) elif k == 'pos_embed': v = v.unsqueeze(0) out_dict[k] = v return out_dict def checkpoint_filter_fn( state_dict, model, interpolation='bicubic', antialias=True, ): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} state_dict = state_dict.get('model_ema', state_dict) state_dict = state_dict.get('model', state_dict) state_dict = state_dict.get('module', state_dict) state_dict = state_dict.get('state_dict', state_dict) # Loading Meta PE (Perception Encoder) weights if 'visual.conv1.weight' in state_dict: return _convert_pe(state_dict, model) elif 'conv1.weight' in state_dict: return _convert_pe(state_dict, model, prefix='') # prefix for loading OpenCLIP compatible weights if 'visual.trunk.pos_embed' in state_dict: prefix = 'visual.trunk.' elif 'visual.pos_embed' in state_dict: prefix = 'visual.' else: prefix = '' mim_weights = prefix + 'mask_token' in state_dict no_qkv = prefix + 'blocks.0.attn.q_proj.weight' in state_dict len_prefix = len(prefix) for k, v in state_dict.items(): if prefix: if not k.startswith(prefix): continue k = k[len_prefix:] if 'rope' in k: # fixed embedding no need to load buffer from checkpoint continue if 'patch_embed.proj.weight' in k: _, _, H, W = model.patch_embed.proj.weight.shape if v.shape[-1] != W or v.shape[-2] != H: v = resample_patch_embed( v, (H, W), interpolation=interpolation, antialias=antialias, verbose=True, ) elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: # To resize pos embedding when using model at different size from pretrained weights num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) v = resample_abs_pos_embed( v, new_size=model.patch_embed.grid_size, num_prefix_tokens=num_prefix_tokens, interpolation=interpolation, antialias=antialias, verbose=True, ) k = k.replace('mlp.ffn_ln', 'mlp.norm') k = k.replace('attn.inner_attn_ln', 'attn.norm') k = k.replace('mlp.w12', 'mlp.fc1') k = k.replace('mlp.w1', 'mlp.fc1_g') k = k.replace('mlp.w2', 'mlp.fc1_x') k = k.replace('mlp.w3', 'mlp.fc2') if no_qkv: k = k.replace('q_bias', 'q_proj.bias') k = k.replace('v_bias', 'v_proj.bias') if mim_weights and k in ('mask_token', 'lm_head.weight', 'lm_head.bias', 'norm.weight', 'norm.bias'): if k == 'norm.weight' or k == 'norm.bias': # try moving norm -> fc norm on fine-tune, probably a better starting point than new init k = k.replace('norm', 'fc_norm') else: # skip pretrain mask token & head weights continue out_dict[k] = v return out_dict def _create_eva(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) model = build_model_with_cfg( Eva, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', 'license': 'mit', **kwargs } def _pe_cfg(url='', **kwargs): return { 'url': url, 'num_classes': 0, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'patch_embed.proj', 'classifier': 'head', 'license': 'custom', **kwargs } default_cfgs = generate_default_cfgs({ # EVA 01 CLIP fine-tuned on imagenet-1k 'eva_giant_patch14_224.clip_ft_in1k': _cfg( # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz224_ftcls_89p1.pt', hf_hub_id='timm/', ), 'eva_giant_patch14_336.clip_ft_in1k': _cfg( # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz336_ftcls_89p4.pt', hf_hub_id='timm/', input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), # MIM EVA 01 pretrain, ft on in22k -> in1k 'eva_giant_patch14_336.m30m_ft_in22k_in1k': _cfg( # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_336px_psz14_ema_89p6.pt', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), 'eva_giant_patch14_560.m30m_ft_in22k_in1k': _cfg( # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_560px_psz14_ema_89p7.pt', hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 560, 560), crop_pct=1.0, crop_mode='squash'), # in22k or m38m MIM pretrain w/ intermediate in22k fine-tune and final in1k fine-tune 'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k': _cfg( # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_B_pt_in21k_medft_in21k_ft_in1k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', ), 'eva02_large_patch14_448.mim_in22k_ft_in22k_in1k': _cfg( # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_L_pt_in21k_medft_in21k_ft_in1k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', ), 'eva02_large_patch14_448.mim_m38m_ft_in22k_in1k': _cfg( hf_hub_id='timm/', #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_L_pt_m38m_medft_in21k_ft_in1k_p14.pt', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', ), # in22k or m3m MIM pretrain w/ in1k fine-tune 'eva02_tiny_patch14_336.mim_in22k_ft_in1k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_Ti_pt_in21k_ft_in1k_p14.pt', hf_hub_id='timm/', input_size=(3, 336, 336), crop_pct=1.0, ), 'eva02_small_patch14_336.mim_in22k_ft_in1k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_S_pt_in21k_ft_in1k_p14.pt', hf_hub_id='timm/', input_size=(3, 336, 336), crop_pct=1.0, ), 'eva02_base_patch14_448.mim_in22k_ft_in1k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_B_pt_in21k_ft_in1k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, ), 'eva02_large_patch14_448.mim_in22k_ft_in1k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_L_pt_in21k_ft_in1k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, ), 'eva02_large_patch14_448.mim_m38m_ft_in1k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_L_pt_m38m_ft_in1k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, ), # in22k or m3m MIM pretrain w/ in22k fine-tune 'eva02_base_patch14_448.mim_in22k_ft_in22k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_B_pt_in21k_medft_in21k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, ), 'eva02_large_patch14_448.mim_in22k_ft_in22k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_L_pt_in21k_medft_in21k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, ), 'eva02_large_patch14_448.mim_m38m_ft_in22k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_L_pt_m38m_medft_in21k_p14.pt', hf_hub_id='timm/', input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, ), # in22k or m38m MIM pretrain 'eva02_tiny_patch14_224.mim_in22k': _cfg( # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_Ti_pt_in21k_p14.pt', hf_hub_id='timm/', num_classes=0, ), 'eva02_small_patch14_224.mim_in22k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_S_pt_in21k_p14.pt', hf_hub_id='timm/', num_classes=0, ), 'eva02_base_patch14_224.mim_in22k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_B_pt_in21k_p14.pt', hf_hub_id='timm/', num_classes=0, ), 'eva02_large_patch14_224.mim_in22k': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_L_pt_in21k_p14.pt', hf_hub_id='timm/', num_classes=0, ), 'eva02_large_patch14_224.mim_m38m': _cfg( #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_L_pt_m38m_p14.pt', hf_hub_id='timm/', num_classes=0, ), # EVA01 and EVA02 CLIP image towers 'eva_giant_patch14_clip_224.laion400m': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA01_CLIP_g_14_plus_psz14_s11B.pt', # hf_hub_id='timm/eva_giant_patch14_clip_224.laion400m_s11b_b41k', # float16 weights # hf_hub_filename='open_clip_pytorch_model.bin', hf_hub_id='timm/', num_classes=1024, ), 'eva_giant_patch14_clip_224.merged2b': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA01_CLIP_g_14_plus_psz14_s11B.pt', # hf_hub_id='timm/eva_giant_patch14_plus_clip_224.merged2b_s11b_b114k', # float16 weights # hf_hub_filename='open_clip_pytorch_model.bin', hf_hub_id='timm/', num_classes=1024, ), 'eva02_base_patch16_clip_224.merged2b': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt', # hf_hub_id='timm/eva02_base_patch16_clip_224.merged2b_s8b_b131k', # float16 weights # hf_hub_filename='open_clip_pytorch_model.bin', hf_hub_id='timm/', num_classes=512, ), 'eva02_large_patch14_clip_224.merged2b': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt', # hf_hub_id='timm/eva02_large_patch14_clip_224.merged2b_s4b_b131k', # float16 weights # hf_hub_filename='open_clip_pytorch_model.bin', hf_hub_id='timm/', num_classes=768, ), 'eva02_large_patch14_clip_336.merged2b': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt', # hf_hub_id='timm/eva02_large_patch14_clip_336.merged2b_s6b_b61k', # float16 weights # hf_hub_filename='open_clip_pytorch_model.bin', hf_hub_id='timm/', input_size=(3, 336, 336), crop_pct=1.0, num_classes=768, ), 'eva02_enormous_patch14_clip_224.laion2b': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_E_psz14_plus_s9B.pt', # hf_hub_id='timm/eva02_enormous_patch14_clip_224.laion2b_s4b_b115k', # float16 weights # hf_hub_filename='open_clip_pytorch_model.bin', hf_hub_id='timm/', num_classes=1024, ), 'eva02_enormous_patch14_clip_224.laion2b_plus': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_E_psz14_plus_s9B.pt', # hf_hub_id='timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k', # bfloat16 weights # hf_hub_filename='open_clip_pytorch_model.bin', hf_hub_id='timm/', num_classes=1024, ), 'eva02_enormous_patch14_clip_224.pretrain': _cfg( # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_E_psz14.pt', num_classes=0, ), 'vit_medium_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) ), 'vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) ), 'vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, ), 'vit_base_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), crop_pct=0.95, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) ), # Perception Encoder weights 'vit_pe_core_base_patch16_224': _pe_cfg( #hf_hub_id='facebook/pe_core_base_patch16_224_timm', hf_hub_id='facebook/PE-Core-B16-224', hf_hub_filename='PE-Core-B16-224.pt', input_size=(3, 224, 224), num_classes=1024, # output proj dim ), 'vit_pe_core_large_patch14_336': _pe_cfg( hf_hub_id='facebook/PE-Core-L14-336', hf_hub_filename='PE-Core-L14-336.pt', input_size=(3, 336, 336), num_classes=1024, # output proj dim ), 'vit_pe_core_gigantic_patch14_448': _pe_cfg( #hf_hub_id='timm/', hf_hub_id='facebook/PE-Core-G14-448', hf_hub_filename='PE-Core-G14-448.pt', input_size=(3, 448, 448), num_classes=1280, # output proj dim ), 'vit_pe_lang_large_patch14_448': _pe_cfg( #hf_hub_id='timm/', hf_hub_id='facebook/PE-Lang-L14-448', hf_hub_filename='PE-Lang-L14-448.pt', input_size=(3, 448, 448), num_classes=0, ), 'vit_pe_lang_gigantic_patch14_448': _pe_cfg( #hf_hub_id='timm/', hf_hub_id='facebook/PE-Lang-G14-448', hf_hub_filename='PE-Lang-G14-448.pt', input_size=(3, 448, 448), num_classes=0, ), 'vit_pe_spatial_gigantic_patch14_448': _pe_cfg( #hf_hub_id='timm/', hf_hub_id='facebook/PE-Spatial-G14-448', hf_hub_filename='PE-Spatial-G14-448.pt', input_size=(3, 448, 448), num_classes=0, ), }) @register_model def eva_giant_patch14_224(pretrained=False, **kwargs) -> Eva: """ EVA-g model https://arxiv.org/abs/2211.07636 """ model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) model = _create_eva('eva_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva_giant_patch14_336(pretrained=False, **kwargs) -> Eva: """ EVA-g model https://arxiv.org/abs/2211.07636 """ model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) model = _create_eva('eva_giant_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva_giant_patch14_560(pretrained=False, **kwargs) -> Eva: """ EVA-g model https://arxiv.org/abs/2211.07636 """ model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) model = _create_eva('eva_giant_patch14_560', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_tiny_patch14_224(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=224, patch_size=14, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_small_patch14_224(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=224, patch_size=14, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_small_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_base_patch14_224(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=224, patch_size=14, embed_dim=768, depth=12, num_heads=12, qkv_fused=False, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_large_patch14_224(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=224, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_tiny_patch14_336(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=336, patch_size=14, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_tiny_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_small_patch14_336(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=336, patch_size=14, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_small_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_base_patch14_448(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=448, patch_size=14, embed_dim=768, depth=12, num_heads=12, qkv_fused=False, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_base_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_large_patch14_448(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=448, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('eva02_large_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva_giant_patch14_clip_224(pretrained=False, **kwargs) -> Eva: """ EVA-g CLIP model (only difference from non-CLIP is the pooling) """ model_args = dict( patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, global_pool=kwargs.pop('global_pool', 'token')) model = _create_eva('eva_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_base_patch16_clip_224(pretrained=False, **kwargs) -> Eva: """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_base """ model_args = dict( img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_fused=False, mlp_ratio=4 * 2 / 3, swiglu_mlp=True, scale_mlp=True, scale_attn_inner=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 global_pool=kwargs.pop('global_pool', 'token'), ) model = _create_eva('eva02_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_large_patch14_clip_224(pretrained=False, **kwargs) -> Eva: """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """ model_args = dict( img_size=224, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, scale_attn_inner=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 global_pool=kwargs.pop('global_pool', 'token'), ) model = _create_eva('eva02_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_large_patch14_clip_336(pretrained=False, **kwargs) -> Eva: """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """ model_args = dict( img_size=336, patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4 * 2 / 3, qkv_fused=False, swiglu_mlp=True, scale_mlp=True, scale_attn_inner=True, use_rot_pos_emb=True, ref_feat_shape=(16, 16), # 224/14 global_pool=kwargs.pop('global_pool', 'token'), ) model = _create_eva('eva02_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def eva02_enormous_patch14_clip_224(pretrained=False, **kwargs) -> Eva: """ A EVA-CLIP specific variant that uses residual post-norm in blocks """ model_args = dict( img_size=224, patch_size=14, embed_dim=1792, depth=64, num_heads=16, mlp_ratio=15360 / 1792, use_post_norm=True, global_pool=kwargs.pop('global_pool', 'token'), ) model = _create_eva('eva02_enormous_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_medium_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=256, patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_fused=True, qkv_bias=True, init_values=1e-5, class_token=False, num_reg_tokens=1, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('vit_medium_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_mediumd_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=256, patch_size=16, embed_dim=512, depth=20, num_heads=8, qkv_fused=True, qkv_bias=False, init_values=1e-5, class_token=False, num_reg_tokens=1, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('vit_mediumd_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_betwixt_patch16_rope_reg4_gap_256(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=256, patch_size=16, embed_dim=640, depth=12, num_heads=10, qkv_fused=True, qkv_bias=True, init_values=1e-5, class_token=False, num_reg_tokens=4, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('vit_betwixt_patch16_rope_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: model_args = dict( img_size=256, patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_fused=True, qkv_bias=True, init_values=1e-5, class_token=False, num_reg_tokens=1, use_rot_pos_emb=True, use_abs_pos_emb=False, ref_feat_shape=(16, 16), # 224/14 ) model = _create_eva('vit_base_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_pe_core_base_patch16_224(pretrained=False, **kwargs): model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, global_pool='map', attn_type='rope', use_pre_transformer_norm=True, use_rot_pos_emb=True, ref_feat_shape=(14, 14), rope_grid_offset=1., rope_grid_indexing='xy', attn_pool_num_heads=8, attn_pool_mlp_ratio=4., norm_layer=partial(LayerNorm, eps=1e-5), #dynamic_img_size=True ) return _create_eva('vit_pe_core_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def vit_pe_core_large_patch14_336(pretrained=False, **kwargs): model_args = dict( patch_size=14, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4.0, global_pool='map', attn_type='rope', use_pre_transformer_norm=True, use_rot_pos_emb=True, ref_feat_shape=(24, 24), rope_grid_offset=1., rope_grid_indexing='xy', attn_pool_num_heads=8, attn_pool_mlp_ratio=4., norm_layer=partial(LayerNorm, eps=1e-5), #dynamic_img_size=True, ) return _create_eva('vit_pe_core_large_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def vit_pe_core_gigantic_patch14_448(pretrained=False, **kwargs): model_args = dict( patch_size=14, embed_dim=1536, depth=50, num_heads=16, mlp_ratio=8960 / 1536, global_pool='map', attn_type='rope', class_token=False, use_pre_transformer_norm=True, use_rot_pos_emb=True, ref_feat_shape=(32, 32), rope_grid_indexing='xy', attn_pool_num_heads=8, attn_pool_mlp_ratio=4., norm_layer=partial(LayerNorm, eps=1e-5), #dynamic_img_size=True, ) return _create_eva('vit_pe_core_gigantic_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def vit_pe_lang_large_patch14_448(pretrained=False, **kwargs): model_args = dict( patch_size=14, embed_dim=1024, depth=23, num_heads=16, mlp_ratio=4.0, attn_type='rope', class_token=True, use_rot_pos_emb=True, ref_feat_shape=(32, 32), rope_grid_offset=1., rope_grid_indexing='xy', use_pre_transformer_norm=True, use_post_transformer_norm=False, use_fc_norm=False, # explicitly disable init_values=0.1, norm_layer=partial(LayerNorm, eps=1e-5), #dynamic_img_size=True, ) return _create_eva('vit_pe_lang_large_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def vit_pe_lang_gigantic_patch14_448(pretrained=False, **kwargs): model_args = dict( patch_size=14, embed_dim=1536, depth=47, num_heads=16, mlp_ratio=8960 / 1536, attn_type='rope', class_token=False, use_rot_pos_emb=True, ref_feat_shape=(32, 32), rope_grid_indexing='xy', use_pre_transformer_norm=True, use_post_transformer_norm=False, use_fc_norm=False, # explicitly disable init_values=0.1, norm_layer=partial(LayerNorm, eps=1e-5), #dynamic_img_size=True, ) return _create_eva('vit_pe_lang_gigantic_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def vit_pe_spatial_gigantic_patch14_448(pretrained=False, **kwargs): model_args = dict( patch_size=14, embed_dim=1536, depth=50, num_heads=16, mlp_ratio=8960 / 1536, attn_type='rope', class_token=False, use_rot_pos_emb=True, ref_feat_shape=(32, 32), rope_grid_indexing='xy', use_pre_transformer_norm=True, use_post_transformer_norm=False, use_fc_norm=False, # explicitly disable init_values=0.1, norm_layer=partial(LayerNorm, eps=1e-5), #dynamic_img_size=True, ) return _create_eva('vit_pe_spatial_gigantic_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs))