""" InceptionNeXt implementation, paper: https://arxiv.org/abs/2303.16900 Some code is borrowed from timm: https://github.com/huggingface/pytorch-image-models """ from functools import partial import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import trunc_normal_, DropPath, to_2tuple from ._manipulate import checkpoint_seq from ._registry import register_model class InceptionDWConv2d(nn.Module): """ Inception depthweise convolution """ def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125): super().__init__() gc = int(in_channels * branch_ratio) # channel numbers of a convolution branch self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size // 2, groups=gc) self.dwconv_w = nn.Conv2d( gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size // 2), groups=gc) self.dwconv_h = nn.Conv2d( gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size // 2, 0), groups=gc) self.split_indexes = (in_channels - 3 * gc, gc, gc, gc) def forward(self, x): x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1) return torch.cat(( x_id, self.dwconv_hw(x_hw), self.dwconv_w(x_w), self.dwconv_h(x_h) ), dim=1, ) class ConvMlp(nn.Module): """ MLP using 1x1 convs that keeps spatial dims copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py """ def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, bias=True, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features bias = to_2tuple(bias) self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0]) self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() self.act = act_layer() self.drop = nn.Dropout(drop) self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1]) def forward(self, x): x = self.fc1(x) x = self.norm(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) return x class MlpHead(nn.Module): """ MLP classification head """ def __init__( self, dim, num_classes=1000, mlp_ratio=3, act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., bias=True): super().__init__() hidden_features = int(mlp_ratio * dim) self.fc1 = nn.Linear(dim, hidden_features, bias=bias) self.act = act_layer() self.norm = norm_layer(hidden_features) self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) self.drop = nn.Dropout(drop) def forward(self, x): x = x.mean((2, 3)) # global average pooling x = self.fc1(x) x = self.act(x) x = self.norm(x) x = self.drop(x) x = self.fc2(x) return x class MetaNeXtBlock(nn.Module): """ MetaNeXtBlock Block Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 ls_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__( self, dim, token_mixer=nn.Identity, norm_layer=nn.BatchNorm2d, mlp_layer=ConvMlp, mlp_ratio=4, act_layer=nn.GELU, ls_init_value=1e-6, drop_path=0., ): super().__init__() self.token_mixer = token_mixer(dim) self.norm = norm_layer(dim) self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer) self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.token_mixer(x) x = self.norm(x) x = self.mlp(x) if self.gamma is not None: x = x.mul(self.gamma.reshape(1, -1, 1, 1)) x = self.drop_path(x) + shortcut return x class MetaNeXtStage(nn.Module): def __init__( self, in_chs, out_chs, ds_stride=2, depth=2, drop_path_rates=None, ls_init_value=1.0, token_mixer=nn.Identity, act_layer=nn.GELU, norm_layer=None, mlp_ratio=4, ): super().__init__() self.grad_checkpointing = False if ds_stride > 1: self.downsample = nn.Sequential( norm_layer(in_chs), nn.Conv2d(in_chs, out_chs, kernel_size=ds_stride, stride=ds_stride), ) else: self.downsample = nn.Identity() drop_path_rates = drop_path_rates or [0.] * depth stage_blocks = [] for i in range(depth): stage_blocks.append(MetaNeXtBlock( dim=out_chs, drop_path=drop_path_rates[i], ls_init_value=ls_init_value, token_mixer=token_mixer, act_layer=act_layer, norm_layer=norm_layer, mlp_ratio=mlp_ratio, )) in_chs = out_chs self.blocks = nn.Sequential(*stage_blocks) def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class MetaNeXt(nn.Module): r""" MetaNeXt A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt` - https://arxiv.org/pdf/2203.xxxxx.pdf Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3) dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768) token_mixers: Token mixer function. Default: nn.Identity norm_layer: Normalziation layer. Default: nn.BatchNorm2d act_layer: Activation function for MLP. Default: nn.GELU mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3) head_fn: classifier head drop_rate (float): Head dropout rate drop_path_rate (float): Stochastic depth rate. Default: 0. ls_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__( self, in_chans=3, num_classes=1000, depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), token_mixers=nn.Identity, norm_layer=nn.BatchNorm2d, act_layer=nn.GELU, mlp_ratios=(4, 4, 4, 3), head_fn=MlpHead, drop_rate=0., drop_path_rate=0., ls_init_value=1e-6, **kwargs, ): super().__init__() num_stage = len(depths) if not isinstance(token_mixers, (list, tuple)): token_mixers = [token_mixers] * num_stage if not isinstance(mlp_ratios, (list, tuple)): mlp_ratios = [mlp_ratios] * num_stage self.num_classes = num_classes self.drop_rate = drop_rate self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), norm_layer(dims[0]) ) self.stages = nn.Sequential() dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] stages = [] prev_chs = dims[0] # feature resolution stages, each consisting of multiple residual blocks for i in range(num_stage): out_chs = dims[i] stages.append(MetaNeXtStage( prev_chs, out_chs, ds_stride=2 if i > 0 else 1, depth=depths[i], drop_path_rates=dp_rates[i], ls_init_value=ls_init_value, act_layer=act_layer, token_mixer=token_mixers[i], norm_layer=norm_layer, mlp_ratio=mlp_ratios[i], )) prev_chs = out_chs self.stages = nn.Sequential(*stages) self.num_features = prev_chs self.head = head_fn(self.num_features, num_classes, drop=drop_rate) self.apply(self._init_weights) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def no_weight_decay(self): return {'norm'} def forward_features(self, x): x = self.stem(x) x = self.stages(x) return x def forward_head(self, x): x = self.head(x) return x def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs } default_cfgs = dict( inception_next_tiny=_cfg( url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth', ), inception_next_small=_cfg( url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth', ), inception_next_base=_cfg( url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth', ), inception_next_base_384=_cfg( url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth', input_size=(3, 384, 384), crop_pct=1.0, ), ) @register_model def inception_next_tiny(pretrained=False, **kwargs): model = MetaNeXt( depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), token_mixers=InceptionDWConv2d, **kwargs ) model.default_cfg = default_cfgs['inception_next_tiny'] if pretrained: state_dict = torch.hub.load_state_dict_from_url( url=model.default_cfg['url'], map_location="cpu", check_hash=True) model.load_state_dict(state_dict) return model @register_model def inception_next_small(pretrained=False, **kwargs): model = MetaNeXt( depths=(3, 3, 27, 3), dims=(96, 192, 384, 768), token_mixers=InceptionDWConv2d, **kwargs ) model.default_cfg = default_cfgs['inception_next_small'] if pretrained: state_dict = torch.hub.load_state_dict_from_url( url=model.default_cfg['url'], map_location="cpu", check_hash=True) model.load_state_dict(state_dict) return model @register_model def inception_next_base(pretrained=False, **kwargs): model = MetaNeXt( depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024), token_mixers=InceptionDWConv2d, **kwargs ) model.default_cfg = default_cfgs['inception_next_base'] if pretrained: state_dict = torch.hub.load_state_dict_from_url( url=model.default_cfg['url'], map_location="cpu", check_hash=True) model.load_state_dict(state_dict) return model @register_model def inception_next_base_384(pretrained=False, **kwargs): model = MetaNeXt( depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], mlp_ratios=[4, 4, 4, 3], token_mixers=InceptionDWConv2d, **kwargs ) model.default_cfg = default_cfgs['inception_next_base_384'] if pretrained: state_dict = torch.hub.load_state_dict_from_url( url=model.default_cfg['url'], map_location="cpu", check_hash=True) model.load_state_dict(state_dict) return model