461 lines
15 KiB
Python
461 lines
15 KiB
Python
""" Pooling-based Vision Transformer (PiT) in PyTorch
|
|
|
|
A PyTorch implement of Pooling-based Vision Transformers as described in
|
|
'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302
|
|
|
|
This code was adapted from the original version at https://github.com/naver-ai/pit, original copyright below.
|
|
|
|
Modifications for timm by / Copyright 2020 Ross Wightman
|
|
"""
|
|
# PiT
|
|
# Copyright 2021-present NAVER Corp.
|
|
# Apache License v2.0
|
|
|
|
import math
|
|
import re
|
|
from functools import partial
|
|
from typing import Optional, Sequence, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.layers import trunc_normal_, to_2tuple
|
|
from ._builder import build_model_with_cfg
|
|
from ._registry import register_model, generate_default_cfgs
|
|
from .vision_transformer import Block
|
|
|
|
|
|
__all__ = ['PoolingVisionTransformer'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
class SequentialTuple(nn.Sequential):
|
|
""" This module exists to work around torchscript typing issues list -> list"""
|
|
def __init__(self, *args):
|
|
super(SequentialTuple, self).__init__(*args)
|
|
|
|
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
for module in self:
|
|
x = module(x)
|
|
return x
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
base_dim,
|
|
depth,
|
|
heads,
|
|
mlp_ratio,
|
|
pool=None,
|
|
proj_drop=.0,
|
|
attn_drop=.0,
|
|
drop_path_prob=None,
|
|
norm_layer=None,
|
|
):
|
|
super(Transformer, self).__init__()
|
|
embed_dim = base_dim * heads
|
|
|
|
self.pool = pool
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
|
self.blocks = nn.Sequential(*[
|
|
Block(
|
|
dim=embed_dim,
|
|
num_heads=heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=True,
|
|
proj_drop=proj_drop,
|
|
attn_drop=attn_drop,
|
|
drop_path=drop_path_prob[i],
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6)
|
|
)
|
|
for i in range(depth)])
|
|
|
|
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
x, cls_tokens = x
|
|
token_length = cls_tokens.shape[1]
|
|
if self.pool is not None:
|
|
x, cls_tokens = self.pool(x, cls_tokens)
|
|
|
|
B, C, H, W = x.shape
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
x = self.norm(x)
|
|
x = self.blocks(x)
|
|
|
|
cls_tokens = x[:, :token_length]
|
|
x = x[:, token_length:]
|
|
x = x.transpose(1, 2).reshape(B, C, H, W)
|
|
|
|
return x, cls_tokens
|
|
|
|
|
|
class Pooling(nn.Module):
|
|
def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'):
|
|
super(Pooling, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(
|
|
in_feature,
|
|
out_feature,
|
|
kernel_size=stride + 1,
|
|
padding=stride // 2,
|
|
stride=stride,
|
|
padding_mode=padding_mode,
|
|
groups=in_feature,
|
|
)
|
|
self.fc = nn.Linear(in_feature, out_feature)
|
|
|
|
def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
x = self.conv(x)
|
|
cls_token = self.fc(cls_token)
|
|
return x, cls_token
|
|
|
|
|
|
class ConvEmbedding(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
img_size: int = 224,
|
|
patch_size: int = 16,
|
|
stride: int = 8,
|
|
padding: int = 0,
|
|
):
|
|
super(ConvEmbedding, self).__init__()
|
|
padding = padding
|
|
self.img_size = to_2tuple(img_size)
|
|
self.patch_size = to_2tuple(patch_size)
|
|
self.height = math.floor((self.img_size[0] + 2 * padding - self.patch_size[0]) / stride + 1)
|
|
self.width = math.floor((self.img_size[1] + 2 * padding - self.patch_size[1]) / stride + 1)
|
|
self.grid_size = (self.height, self.width)
|
|
|
|
self.conv = nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=patch_size,
|
|
stride=stride, padding=padding, bias=True)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class PoolingVisionTransformer(nn.Module):
|
|
""" Pooling-based Vision Transformer
|
|
|
|
A PyTorch implement of 'Rethinking Spatial Dimensions of Vision Transformers'
|
|
- https://arxiv.org/abs/2103.16302
|
|
"""
|
|
def __init__(
|
|
self,
|
|
img_size: int = 224,
|
|
patch_size: int = 16,
|
|
stride: int = 8,
|
|
stem_type: str = 'overlap',
|
|
base_dims: Sequence[int] = (48, 48, 48),
|
|
depth: Sequence[int] = (2, 6, 4),
|
|
heads: Sequence[int] = (2, 4, 8),
|
|
mlp_ratio: float = 4,
|
|
num_classes=1000,
|
|
in_chans=3,
|
|
global_pool='token',
|
|
distilled=False,
|
|
drop_rate=0.,
|
|
pos_drop_drate=0.,
|
|
proj_drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
):
|
|
super(PoolingVisionTransformer, self).__init__()
|
|
assert global_pool in ('token',)
|
|
|
|
self.base_dims = base_dims
|
|
self.heads = heads
|
|
embed_dim = base_dims[0] * heads[0]
|
|
self.num_classes = num_classes
|
|
self.global_pool = global_pool
|
|
self.num_tokens = 2 if distilled else 1
|
|
self.feature_info = []
|
|
|
|
self.patch_embed = ConvEmbedding(in_chans, embed_dim, img_size, patch_size, stride)
|
|
self.pos_embed = nn.Parameter(torch.randn(1, embed_dim, self.patch_embed.height, self.patch_embed.width))
|
|
self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, embed_dim))
|
|
self.pos_drop = nn.Dropout(p=pos_drop_drate)
|
|
|
|
transformers = []
|
|
# stochastic depth decay rule
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)]
|
|
prev_dim = embed_dim
|
|
for i in range(len(depth)):
|
|
pool = None
|
|
embed_dim = base_dims[i] * heads[i]
|
|
if i > 0:
|
|
pool = Pooling(
|
|
prev_dim,
|
|
embed_dim,
|
|
stride=2,
|
|
)
|
|
transformers += [Transformer(
|
|
base_dims[i],
|
|
depth[i],
|
|
heads[i],
|
|
mlp_ratio,
|
|
pool=pool,
|
|
proj_drop=proj_drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path_prob=dpr[i],
|
|
)]
|
|
prev_dim = embed_dim
|
|
self.feature_info += [dict(num_chs=prev_dim, reduction=(stride - 1) * 2**i, module=f'transformers.{i}')]
|
|
|
|
self.transformers = SequentialTuple(*transformers)
|
|
self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6)
|
|
self.num_features = self.head_hidden_size = self.embed_dim = embed_dim
|
|
|
|
# Classifier head
|
|
self.head_drop = nn.Dropout(drop_rate)
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
self.head_dist = None
|
|
if distilled:
|
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
|
|
self.distilled_training = False # must set this True to train w/ distillation token
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'pos_embed', 'cls_token'}
|
|
|
|
@torch.jit.ignore
|
|
def set_distilled_training(self, enable=True):
|
|
self.distilled_training = enable
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
assert not enable, 'gradient checkpointing not supported'
|
|
|
|
def get_classifier(self) -> nn.Module:
|
|
if self.head_dist is not None:
|
|
return self.head, self.head_dist
|
|
else:
|
|
return self.head
|
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
|
self.num_classes = num_classes
|
|
if global_pool is not None:
|
|
self.global_pool = global_pool
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
if self.head_dist is not None:
|
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
def forward_features(self, x):
|
|
x = self.patch_embed(x)
|
|
x = self.pos_drop(x + self.pos_embed)
|
|
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
|
|
x, cls_tokens = self.transformers((x, cls_tokens))
|
|
cls_tokens = self.norm(cls_tokens)
|
|
return cls_tokens
|
|
|
|
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
|
|
if self.head_dist is not None:
|
|
assert self.global_pool == 'token'
|
|
x, x_dist = x[:, 0], x[:, 1]
|
|
x = self.head_drop(x)
|
|
x_dist = self.head_drop(x)
|
|
if not pre_logits:
|
|
x = self.head(x)
|
|
x_dist = self.head_dist(x_dist)
|
|
if self.distilled_training and self.training and not torch.jit.is_scripting():
|
|
# only return separate classification predictions when training in distilled mode
|
|
return x, x_dist
|
|
else:
|
|
# during standard train / finetune, inference average the classifier predictions
|
|
return (x + x_dist) / 2
|
|
else:
|
|
if self.global_pool == 'token':
|
|
x = x[:, 0]
|
|
x = self.head_drop(x)
|
|
if not pre_logits:
|
|
x = self.head(x)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
""" preprocess checkpoints """
|
|
out_dict = {}
|
|
p_blocks = re.compile(r'pools\.(\d)\.')
|
|
for k, v in state_dict.items():
|
|
# FIXME need to update resize for PiT impl
|
|
# if k == 'pos_embed' and v.shape != model.pos_embed.shape:
|
|
# # To resize pos embedding when using model at different size from pretrained weights
|
|
# v = resize_pos_embed(v, model.pos_embed)
|
|
k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1)) + 1}.pool.', k)
|
|
out_dict[k] = v
|
|
return out_dict
|
|
|
|
|
|
def _create_pit(variant, pretrained=False, **kwargs):
|
|
default_out_indices = tuple(range(3))
|
|
out_indices = kwargs.pop('out_indices', default_out_indices)
|
|
|
|
model = build_model_with_cfg(
|
|
PoolingVisionTransformer,
|
|
variant,
|
|
pretrained,
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
feature_cfg=dict(feature_cls='hook', no_rewrite=True, out_indices=out_indices),
|
|
**kwargs,
|
|
)
|
|
return model
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'patch_embed.conv', 'classifier': 'head',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
# deit models (FB weights)
|
|
'pit_ti_224.in1k': _cfg(hf_hub_id='timm/'),
|
|
'pit_xs_224.in1k': _cfg(hf_hub_id='timm/'),
|
|
'pit_s_224.in1k': _cfg(hf_hub_id='timm/'),
|
|
'pit_b_224.in1k': _cfg(hf_hub_id='timm/'),
|
|
'pit_ti_distilled_224.in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
classifier=('head', 'head_dist')),
|
|
'pit_xs_distilled_224.in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
classifier=('head', 'head_dist')),
|
|
'pit_s_distilled_224.in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
classifier=('head', 'head_dist')),
|
|
'pit_b_distilled_224.in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
classifier=('head', 'head_dist')),
|
|
})
|
|
|
|
|
|
@register_model
|
|
def pit_b_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=14,
|
|
stride=7,
|
|
base_dims=[64, 64, 64],
|
|
depth=[3, 6, 4],
|
|
heads=[4, 8, 16],
|
|
mlp_ratio=4,
|
|
)
|
|
return _create_pit('pit_b_224', pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def pit_s_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=16,
|
|
stride=8,
|
|
base_dims=[48, 48, 48],
|
|
depth=[2, 6, 4],
|
|
heads=[3, 6, 12],
|
|
mlp_ratio=4,
|
|
)
|
|
return _create_pit('pit_s_224', pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def pit_xs_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=16,
|
|
stride=8,
|
|
base_dims=[48, 48, 48],
|
|
depth=[2, 6, 4],
|
|
heads=[2, 4, 8],
|
|
mlp_ratio=4,
|
|
)
|
|
return _create_pit('pit_xs_224', pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def pit_ti_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=16,
|
|
stride=8,
|
|
base_dims=[32, 32, 32],
|
|
depth=[2, 6, 4],
|
|
heads=[2, 4, 8],
|
|
mlp_ratio=4,
|
|
)
|
|
return _create_pit('pit_ti_224', pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def pit_b_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=14,
|
|
stride=7,
|
|
base_dims=[64, 64, 64],
|
|
depth=[3, 6, 4],
|
|
heads=[4, 8, 16],
|
|
mlp_ratio=4,
|
|
distilled=True,
|
|
)
|
|
return _create_pit('pit_b_distilled_224', pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def pit_s_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=16,
|
|
stride=8,
|
|
base_dims=[48, 48, 48],
|
|
depth=[2, 6, 4],
|
|
heads=[3, 6, 12],
|
|
mlp_ratio=4,
|
|
distilled=True,
|
|
)
|
|
return _create_pit('pit_s_distilled_224', pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def pit_xs_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=16,
|
|
stride=8,
|
|
base_dims=[48, 48, 48],
|
|
depth=[2, 6, 4],
|
|
heads=[2, 4, 8],
|
|
mlp_ratio=4,
|
|
distilled=True,
|
|
)
|
|
return _create_pit('pit_xs_distilled_224', pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def pit_ti_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer:
|
|
model_args = dict(
|
|
patch_size=16,
|
|
stride=8,
|
|
base_dims=[32, 32, 32],
|
|
depth=[2, 6, 4],
|
|
heads=[2, 4, 8],
|
|
mlp_ratio=4,
|
|
distilled=True,
|
|
)
|
|
return _create_pit('pit_ti_distilled_224', pretrained, **dict(model_args, **kwargs))
|