657 lines
24 KiB
Python
657 lines
24 KiB
Python
import math
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
from typing import Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.jit import Final
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \
|
|
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn
|
|
|
|
from ._builder import build_model_with_cfg
|
|
from ._features import feature_take_indices
|
|
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
|
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
|
|
|
|
|
def window_partition(x, window_size: Tuple[int, int]):
|
|
"""
|
|
Partition into non-overlapping windows with padding if needed.
|
|
Args:
|
|
x (tensor): input tokens with [B, H, W, C].
|
|
window_size (int): window size.
|
|
Returns:
|
|
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
|
(Hp, Wp): padded height and width before partition
|
|
"""
|
|
B, H, W, C = x.shape
|
|
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
|
return windows
|
|
|
|
|
|
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]):
|
|
"""
|
|
Window unpartition into original sequences and removing padding.
|
|
Args:
|
|
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
|
window_size (int): window size.
|
|
hw (Tuple): original height and width (H, W) before padding.
|
|
Returns:
|
|
x: unpartitioned sequences with [B, H, W, C].
|
|
"""
|
|
H, W = hw
|
|
B = windows.shape[0] // (H * W // window_size[0] // window_size[1])
|
|
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
return x
|
|
|
|
|
|
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
|
|
pad_h = (window_size[0] - H % window_size[0]) % window_size[0]
|
|
pad_w = (window_size[1] - W % window_size[1]) % window_size[1]
|
|
Hp, Wp = H + pad_h, W + pad_w
|
|
return Hp, Wp, pad_h, pad_w
|
|
|
|
|
|
class MultiScaleAttention(nn.Module):
|
|
fused_attn: torch.jit.Final[bool]
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
dim_out: int,
|
|
num_heads: int,
|
|
q_pool: nn.Module = None,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.dim_out = dim_out
|
|
self.num_heads = num_heads
|
|
head_dim = dim_out // num_heads
|
|
self.scale = head_dim ** -0.5
|
|
self.fused_attn = use_fused_attn()
|
|
|
|
self.q_pool = q_pool
|
|
self.qkv = nn.Linear(dim, dim_out * 3)
|
|
self.proj = nn.Linear(dim_out, dim_out)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
B, H, W, _ = x.shape
|
|
|
|
# qkv with shape (B, H * W, 3, nHead, C)
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
|
|
|
# q, k, v with shape (B, H * W, nheads, C)
|
|
q, k, v = torch.unbind(qkv, 2)
|
|
|
|
# Q pooling (for downsample at stage changes)
|
|
if self.q_pool is not None:
|
|
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool
|
|
q = self.q_pool(q).permute(0, 2, 3, 1)
|
|
H, W = q.shape[1:3] # downsampled shape
|
|
q = q.reshape(B, H * W, self.num_heads, -1)
|
|
|
|
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
|
q = q.transpose(1, 2)
|
|
k = k.transpose(1, 2)
|
|
v = v.transpose(1, 2)
|
|
if self.fused_attn:
|
|
x = F.scaled_dot_product_attention(q, k, v)
|
|
else:
|
|
q = q * self.scale
|
|
attn = q @ k.transpose(-1, -2)
|
|
attn = attn.softmax(dim=-1)
|
|
x = attn @ v
|
|
|
|
# Transpose back
|
|
x = x.transpose(1, 2).reshape(B, H, W, -1)
|
|
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class MultiScaleBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
dim_out: int,
|
|
num_heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
q_stride: Optional[Tuple[int, int]] = None,
|
|
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
|
act_layer: Union[nn.Module, str] = "GELU",
|
|
window_size: int = 0,
|
|
init_values: Optional[float] = None,
|
|
drop_path: float = 0.0,
|
|
):
|
|
super().__init__()
|
|
norm_layer = get_norm_layer(norm_layer)
|
|
act_layer = get_act_layer(act_layer)
|
|
self.window_size = to_2tuple(window_size)
|
|
self.is_windowed = any(self.window_size)
|
|
self.dim = dim
|
|
self.dim_out = dim_out
|
|
self.q_stride = q_stride
|
|
|
|
if dim != dim_out:
|
|
self.proj = nn.Linear(dim, dim_out)
|
|
else:
|
|
self.proj = nn.Identity()
|
|
self.pool = None
|
|
if self.q_stride:
|
|
# note make a different instance for this Module so that it's not shared with attn module
|
|
self.pool = nn.MaxPool2d(
|
|
kernel_size=q_stride,
|
|
stride=q_stride,
|
|
ceil_mode=False,
|
|
)
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = MultiScaleAttention(
|
|
dim,
|
|
dim_out,
|
|
num_heads=num_heads,
|
|
q_pool=deepcopy(self.pool),
|
|
)
|
|
self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim_out)
|
|
self.mlp = Mlp(
|
|
dim_out,
|
|
int(dim_out * mlp_ratio),
|
|
act_layer=act_layer,
|
|
)
|
|
self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
shortcut = x # B, H, W, C
|
|
x = self.norm1(x)
|
|
|
|
# Skip connection
|
|
if self.dim != self.dim_out:
|
|
shortcut = self.proj(x)
|
|
if self.pool is not None:
|
|
shortcut = shortcut.permute(0, 3, 1, 2)
|
|
shortcut = self.pool(shortcut).permute(0, 2, 3, 1)
|
|
|
|
# Window partition
|
|
window_size = self.window_size
|
|
H, W = x.shape[1:3]
|
|
Hp, Wp = H, W # keep torchscript happy
|
|
if self.is_windowed:
|
|
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
|
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
|
x = window_partition(x, window_size)
|
|
|
|
# Window Attention + Q Pooling (if stage change)
|
|
x = self.attn(x)
|
|
if self.q_stride is not None:
|
|
# Shapes have changed due to Q pooling
|
|
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1])
|
|
H, W = shortcut.shape[1:3]
|
|
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
|
|
|
|
# Reverse window partition
|
|
if self.is_windowed:
|
|
x = window_unpartition(x, window_size, (Hp, Wp))
|
|
x = x[:, :H, :W, :].contiguous() # unpad
|
|
|
|
x = shortcut + self.drop_path1(self.ls1(x))
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
|
return x
|
|
|
|
|
|
class HieraPatchEmbed(nn.Module):
|
|
"""
|
|
Image to Patch Embedding.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
kernel_size: Tuple[int, ...] = (7, 7),
|
|
stride: Tuple[int, ...] = (4, 4),
|
|
padding: Tuple[int, ...] = (3, 3),
|
|
in_chans: int = 3,
|
|
embed_dim: int = 768,
|
|
):
|
|
"""
|
|
Args:
|
|
kernel_size (Tuple): kernel size of the projection layer.
|
|
stride (Tuple): stride of the projection layer.
|
|
padding (Tuple): padding size of the projection layer.
|
|
in_chans (int): Number of input image channels.
|
|
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
|
"""
|
|
super().__init__()
|
|
self.proj = nn.Conv2d(
|
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj(x)
|
|
# B C H W -> B H W C
|
|
x = x.permute(0, 2, 3, 1)
|
|
return x
|
|
|
|
|
|
class HieraDet(nn.Module):
|
|
"""
|
|
Reference: https://arxiv.org/abs/2306.00989
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_chans: int = 3,
|
|
num_classes: int = 1000,
|
|
global_pool: str = 'avg',
|
|
embed_dim: int = 96, # initial embed dim
|
|
num_heads: int = 1, # initial number of heads
|
|
patch_kernel: Tuple[int, ...] = (7, 7),
|
|
patch_stride: Tuple[int, ...] = (4, 4),
|
|
patch_padding: Tuple[int, ...] = (3, 3),
|
|
patch_size: Optional[Tuple[int, ...]] = None,
|
|
q_pool: int = 3, # number of q_pool stages
|
|
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
|
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
|
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
|
head_mul: float = 2.0, # head_mul factor at stage shift
|
|
global_pos_size: Tuple[int, int] = (7, 7),
|
|
# window size per stage, when not using global att.
|
|
window_spec: Tuple[int, ...] = (
|
|
8,
|
|
4,
|
|
14,
|
|
7,
|
|
),
|
|
# global attn in these blocks
|
|
global_att_blocks: Tuple[int, ...] = (
|
|
12,
|
|
16,
|
|
20,
|
|
),
|
|
init_values: Optional[float] = None,
|
|
weight_init: str = '',
|
|
fix_init: bool = True,
|
|
head_init_scale: float = 0.001,
|
|
drop_rate: float = 0.0,
|
|
drop_path_rate: float = 0.0, # stochastic depth
|
|
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
|
act_layer: Union[nn.Module, str] = "GELU",
|
|
):
|
|
super().__init__()
|
|
norm_layer = get_norm_layer(norm_layer)
|
|
act_layer = get_act_layer(act_layer)
|
|
assert len(stages) == len(window_spec)
|
|
self.num_classes = num_classes
|
|
self.window_spec = window_spec
|
|
self.output_fmt = 'NHWC'
|
|
|
|
depth = sum(stages)
|
|
self.q_stride = q_stride
|
|
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
|
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
|
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
|
|
|
if patch_size is not None:
|
|
# use a non-overlapping vit style patch embed
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=None,
|
|
patch_size=patch_size,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
output_fmt='NHWC',
|
|
dynamic_img_pad=True,
|
|
)
|
|
else:
|
|
self.patch_embed = HieraPatchEmbed(
|
|
kernel_size=patch_kernel,
|
|
stride=patch_stride,
|
|
padding=patch_padding,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
)
|
|
# Which blocks have global att?
|
|
self.global_att_blocks = global_att_blocks
|
|
|
|
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
|
self.global_pos_size = global_pos_size
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size))
|
|
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
cur_stage = 0
|
|
self.blocks = nn.Sequential()
|
|
self.feature_info = []
|
|
for i in range(depth):
|
|
dim_out = embed_dim
|
|
# lags by a block, so first block of
|
|
# next stage uses an initial window size
|
|
# of previous stage and final window size of current stage
|
|
window_size = self.window_spec[cur_stage]
|
|
|
|
if self.global_att_blocks is not None:
|
|
window_size = 0 if i in self.global_att_blocks else window_size
|
|
|
|
if i - 1 in self.stage_ends:
|
|
dim_out = int(embed_dim * dim_mul)
|
|
num_heads = int(num_heads * head_mul)
|
|
cur_stage += 1
|
|
|
|
block = MultiScaleBlock(
|
|
dim=embed_dim,
|
|
dim_out=dim_out,
|
|
num_heads=num_heads,
|
|
drop_path=dpr[i],
|
|
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
|
window_size=window_size,
|
|
norm_layer=norm_layer,
|
|
act_layer=act_layer,
|
|
)
|
|
|
|
embed_dim = dim_out
|
|
self.blocks.append(block)
|
|
if i in self.stage_ends:
|
|
self.feature_info += [
|
|
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
|
|
|
|
self.num_features = self.head_hidden_size = embed_dim
|
|
self.head = ClNormMlpClassifierHead(
|
|
embed_dim,
|
|
num_classes,
|
|
pool_type=global_pool,
|
|
drop_rate=drop_rate,
|
|
norm_layer=norm_layer,
|
|
)
|
|
|
|
# Initialize everything
|
|
if self.pos_embed is not None:
|
|
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
|
|
|
if self.pos_embed_window is not None:
|
|
nn.init.trunc_normal_(self.pos_embed_window, std=0.02)
|
|
|
|
if weight_init != 'skip':
|
|
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
|
|
init_fn = partial(init_fn, classifier_name='head.fc')
|
|
named_apply(init_fn, self)
|
|
|
|
if fix_init:
|
|
self.fix_init_weight()
|
|
|
|
if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear):
|
|
self.head.fc.weight.data.mul_(head_init_scale)
|
|
self.head.fc.bias.data.mul_(head_init_scale)
|
|
|
|
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
|
|
h, w = x.shape[1:3]
|
|
window_embed = self.pos_embed_window
|
|
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
|
tile_h = pos_embed.shape[-2] // window_embed.shape[-2]
|
|
tile_w = pos_embed.shape[-1] // window_embed.shape[-1]
|
|
pos_embed = pos_embed + window_embed.tile((tile_h, tile_w))
|
|
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
|
return x + pos_embed
|
|
|
|
def fix_init_weight(self):
|
|
def rescale(param, _layer_id):
|
|
param.div_(math.sqrt(2.0 * _layer_id))
|
|
|
|
for layer_id, layer in enumerate(self.blocks):
|
|
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return ['pos_embed', 'pos_embed_window']
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse: bool = False) -> Dict:
|
|
return dict(
|
|
stem=r'^pos_embed|pos_embed_window|patch_embed',
|
|
blocks=[(r'^blocks\.(\d+)', None)]
|
|
)
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable: bool = True) -> None:
|
|
self.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head.fc
|
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
|
|
self.num_classes = num_classes
|
|
self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other)
|
|
|
|
def forward_intermediates(
|
|
self,
|
|
x: torch.Tensor,
|
|
indices: Optional[Union[int, List[int]]] = None,
|
|
norm: bool = False,
|
|
stop_early: bool = True,
|
|
output_fmt: str = 'NCHW',
|
|
intermediates_only: bool = False,
|
|
coarse: bool = True,
|
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
|
""" Forward features that returns intermediates.
|
|
|
|
Args:
|
|
x: Input image tensor
|
|
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
|
norm: Apply norm layer to all intermediates
|
|
stop_early: Stop iterating over blocks when last desired intermediate hit
|
|
output_fmt: Shape of intermediate feature outputs
|
|
intermediates_only: Only return intermediate features
|
|
coarse: Take coarse features (stage ends) if true, otherwise all block featrures
|
|
Returns:
|
|
|
|
"""
|
|
assert not norm, 'normalization of features not supported'
|
|
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
|
|
if coarse:
|
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
|
take_indices = [self.stage_ends[i] for i in take_indices]
|
|
max_index = self.stage_ends[max_index]
|
|
else:
|
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
|
|
|
x = self.patch_embed(x)
|
|
x = self._pos_embed(x)
|
|
|
|
intermediates = []
|
|
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
|
blocks = self.blocks
|
|
else:
|
|
blocks = self.blocks[:max_index + 1]
|
|
for i, blk in enumerate(blocks):
|
|
x = blk(x)
|
|
if i in take_indices:
|
|
x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x
|
|
intermediates.append(x_out)
|
|
|
|
if intermediates_only:
|
|
return intermediates
|
|
|
|
return x, intermediates
|
|
|
|
def prune_intermediate_layers(
|
|
self,
|
|
indices: Union[int, List[int]] = 1,
|
|
prune_norm: bool = False,
|
|
prune_head: bool = True,
|
|
coarse: bool = True,
|
|
):
|
|
""" Prune layers not required for specified intermediates.
|
|
"""
|
|
if coarse:
|
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
|
|
max_index = self.stage_ends[max_index]
|
|
else:
|
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
|
self.blocks = self.blocks[:max_index + 1] # truncate blocks
|
|
if prune_head:
|
|
self.head.reset(0, reset_other=prune_norm)
|
|
return take_indices
|
|
|
|
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.patch_embed(x) # BHWC
|
|
x = self._pos_embed(x)
|
|
for i, blk in enumerate(self.blocks):
|
|
x = blk(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
|
|
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
|
return x
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224.
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28),
|
|
'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224),
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
"sam2_hiera_tiny.fb_r896": _cfg(
|
|
# hf_hub_id='facebook/sam2-hiera-tiny',
|
|
# hf_hub_filename='sam2_hiera_tiny.pt',
|
|
hf_hub_id='timm/',
|
|
),
|
|
"sam2_hiera_tiny.fb_r896_2pt1": _cfg(
|
|
# hf_hub_id='facebook/sam2.1-hiera-tiny',
|
|
# hf_hub_filename='sam2.1_hiera_tiny.pt',
|
|
hf_hub_id='timm/',
|
|
),
|
|
"sam2_hiera_small.fb_r896": _cfg(
|
|
# hf_hub_id='facebook/sam2-hiera-small',
|
|
# hf_hub_filename='sam2_hiera_small.pt',
|
|
hf_hub_id='timm/',
|
|
),
|
|
"sam2_hiera_small.fb_r896_2pt1": _cfg(
|
|
# hf_hub_id='facebook/sam2.1-hiera-small',
|
|
# hf_hub_filename='sam2.1_hiera_small.pt',
|
|
hf_hub_id='timm/',
|
|
),
|
|
"sam2_hiera_base_plus.fb_r896": _cfg(
|
|
# hf_hub_id='facebook/sam2-hiera-base-plus',
|
|
# hf_hub_filename='sam2_hiera_base_plus.pt',
|
|
hf_hub_id='timm/',
|
|
),
|
|
"sam2_hiera_base_plus.fb_r896_2pt1": _cfg(
|
|
# hf_hub_id='facebook/sam2.1-hiera-base-plus',
|
|
# hf_hub_filename='sam2.1_hiera_base_plus.pt',
|
|
hf_hub_id='timm/',
|
|
),
|
|
"sam2_hiera_large.fb_r1024": _cfg(
|
|
# hf_hub_id='facebook/sam2-hiera-large',
|
|
# hf_hub_filename='sam2_hiera_large.pt',
|
|
hf_hub_id='timm/',
|
|
min_input_size=(3, 256, 256),
|
|
input_size=(3, 1024, 1024), pool_size=(32, 32),
|
|
),
|
|
"sam2_hiera_large.fb_r1024_2pt1": _cfg(
|
|
# hf_hub_id='facebook/sam2.1-hiera-large',
|
|
# hf_hub_filename='sam2.1_hiera_large.pt',
|
|
hf_hub_id='timm/',
|
|
min_input_size=(3, 256, 256),
|
|
input_size=(3, 1024, 1024), pool_size=(32, 32),
|
|
),
|
|
"hieradet_small.untrained": _cfg(
|
|
num_classes=1000,
|
|
input_size=(3, 256, 256), pool_size=(8, 8),
|
|
),
|
|
})
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model=None, prefix=''):
|
|
state_dict = state_dict.get('model', state_dict)
|
|
|
|
output = {}
|
|
for k, v in state_dict.items():
|
|
if k.startswith(prefix):
|
|
k = k.replace(prefix, '')
|
|
else:
|
|
continue
|
|
k = k.replace('mlp.layers.0', 'mlp.fc1')
|
|
k = k.replace('mlp.layers.1', 'mlp.fc2')
|
|
output[k] = v
|
|
return output
|
|
|
|
|
|
def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet:
|
|
out_indices = kwargs.pop('out_indices', 4)
|
|
checkpoint_prefix = ''
|
|
# if 'sam2' in variant:
|
|
# # SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`)
|
|
# # This is workaround loading with num_classes=0 w/o removing norm-layer.
|
|
# kwargs.setdefault('pretrained_strict', False)
|
|
# checkpoint_prefix = 'image_encoder.trunk.'
|
|
return build_model_with_cfg(
|
|
HieraDet,
|
|
variant,
|
|
pretrained,
|
|
pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix),
|
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model
|
|
def sam2_hiera_tiny(pretrained=False, **kwargs):
|
|
model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9))
|
|
return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def sam2_hiera_small(pretrained=False, **kwargs):
|
|
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13))
|
|
return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def sam2_hiera_base_plus(pretrained=False, **kwargs):
|
|
model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14))
|
|
return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def sam2_hiera_large(pretrained=False, **kwargs):
|
|
model_args = dict(
|
|
embed_dim=144,
|
|
num_heads=2,
|
|
stages=(2, 6, 36, 4),
|
|
global_att_blocks=(23, 33, 43),
|
|
window_spec=(8, 4, 16, 8),
|
|
)
|
|
return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def hieradet_small(pretrained=False, **kwargs):
|
|
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5)
|
|
return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
# @register_model
|
|
# def hieradet_base(pretrained=False, **kwargs):
|
|
# model_args = dict(window_spec=(8, 4, 16, 8))
|
|
# return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs))
|