pytorch-image-models/timm/models/tresnet.py

356 lines
13 KiB
Python

"""
TResNet: High Performance GPU-Dedicated Architecture
https://arxiv.org/pdf/2003.13630.pdf
Original model: https://github.com/mrT23/TResNet
"""
from collections import OrderedDict
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule,\
ConvNormActAa, ConvNormAct, DropPath
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
__all__ = ['TResNet'] # model_registry will add each entrypoint fn to this
class BasicBlock(nn.Module):
expansion = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
use_se=True,
aa_layer=None,
drop_path_rate=0.
):
super(BasicBlock, self).__init__()
self.downsample = downsample
self.stride = stride
act_layer = partial(nn.LeakyReLU, negative_slope=1e-3)
if stride == 1:
self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=1, act_layer=act_layer)
else:
self.conv1 = ConvNormActAa(
inplanes, planes, kernel_size=3, stride=2, act_layer=act_layer, aa_layer=aa_layer)
self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False, act_layer=None)
self.act = nn.ReLU(inplace=True)
rd_chs = max(planes * self.expansion // 4, 64)
self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
def forward(self, x):
if self.downsample is not None:
shortcut = self.downsample(x)
else:
shortcut = x
out = self.conv1(x)
out = self.conv2(out)
if self.se is not None:
out = self.se(out)
out = self.drop_path(out) + shortcut
out = self.act(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
use_se=True,
act_layer=None,
aa_layer=None,
drop_path_rate=0.,
):
super(Bottleneck, self).__init__()
self.downsample = downsample
self.stride = stride
act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3)
self.conv1 = ConvNormAct(
inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer)
if stride == 1:
self.conv2 = ConvNormAct(
planes, planes, kernel_size=3, stride=1, act_layer=act_layer)
else:
self.conv2 = ConvNormActAa(
planes, planes, kernel_size=3, stride=2, act_layer=act_layer, aa_layer=aa_layer)
reduction_chs = max(planes * self.expansion // 8, 64)
self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None
self.conv3 = ConvNormAct(
planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False, act_layer=None)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
self.act = nn.ReLU(inplace=True)
def forward(self, x):
if self.downsample is not None:
shortcut = self.downsample(x)
else:
shortcut = x
out = self.conv1(x)
out = self.conv2(out)
if self.se is not None:
out = self.se(out)
out = self.conv3(out)
out = self.drop_path(out) + shortcut
out = self.act(out)
return out
class TResNet(nn.Module):
def __init__(
self,
layers,
in_chans=3,
num_classes=1000,
width_factor=1.0,
v2=False,
global_pool='fast',
drop_rate=0.,
drop_path_rate=0.,
):
self.num_classes = num_classes
self.drop_rate = drop_rate
self.grad_checkpointing = False
super(TResNet, self).__init__()
aa_layer = BlurPool2d
act_layer = nn.LeakyReLU
# TResnet stages
self.inplanes = int(64 * width_factor)
self.planes = int(64 * width_factor)
if v2:
self.inplanes = self.inplanes // 8 * 8
self.planes = self.planes // 8 * 8
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)]
conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer)
layer1 = self._make_layer(
Bottleneck if v2 else BasicBlock,
self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0])
layer2 = self._make_layer(
Bottleneck if v2 else BasicBlock,
self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1])
layer3 = self._make_layer(
Bottleneck,
self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2])
layer4 = self._make_layer(
Bottleneck,
self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3])
# body
self.body = nn.Sequential(OrderedDict([
('s2d', SpaceToDepth()),
('conv1', conv1),
('layer1', layer1),
('layer2', layer2),
('layer3', layer3),
('layer4', layer4),
]))
self.feature_info = [
dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D?
dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'),
dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'),
dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'),
dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'),
]
# head
self.num_features = (self.planes * 8) * Bottleneck.expansion
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
# model initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
if isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
# residual connections special initialization
for m in self.modules():
if isinstance(m, BasicBlock):
nn.init.zeros_(m.conv2.bn.weight)
if isinstance(m, Bottleneck):
nn.init.zeros_(m.conv3.bn.weight)
def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
layers = []
if stride == 2:
# avg pooling before 1x1 conv
layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False))
layers += [ConvNormAct(
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False, act_layer=None)]
downsample = nn.Sequential(*layers)
layers = []
for i in range(blocks):
layers.append(block(
self.inplanes,
planes,
stride=stride if i == 0 else 1,
downsample=downsample if i == 0 else None,
use_se=use_se,
aa_layer=aa_layer,
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate,
))
self.inplanes = planes * block.expansion
return nn.Sequential(*layers)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)')
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, pool_type=global_pool)
def forward_features(self, x):
if self.grad_checkpointing and not torch.jit.is_scripting():
x = self.body.s2d(x)
x = self.body.conv1(x)
x = checkpoint_seq([
self.body.layer1,
self.body.layer2,
self.body.layer3,
self.body.layer4],
x, flatten=True)
else:
x = self.body(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model):
if 'body.conv1.conv.weight' in state_dict:
return state_dict
import re
state_dict = state_dict.get('model', state_dict)
state_dict = state_dict.get('state_dict', state_dict)
out_dict = {}
for k, v in state_dict.items():
k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k)
k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k)
k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k)
k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k)
k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k)
k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k)
if k.endswith('bn.weight'):
# convert weight from inplace_abn to batchnorm
v = v.abs().add(1e-5)
out_dict[k] = v
return out_dict
def _create_tresnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
TResNet,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True),
**kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': (0., 0., 0.), 'std': (1., 1., 1.),
'first_conv': 'body.conv1.conv', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_m.miil_in1k_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
hf_hub_id='timm/'),
'tresnet_l.miil_in1k_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
hf_hub_id='timm/'),
'tresnet_xl.miil_in1k_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
hf_hub_id='timm/'),
'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
})
@register_model
def tresnet_m(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[3, 4, 11, 3])
return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def tresnet_l(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2)
return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def tresnet_xl(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3)
return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True)
return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs))
register_model_deprecations(__name__, {
'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k',
'tresnet_m_448': 'tresnet_m.miil_in1k_448',
'tresnet_l_448': 'tresnet_l.miil_in1k_448',
'tresnet_xl_448': 'tresnet_xl.miil_in1k_448',
})