* update: use numpy to generate repeated indices faster * update: use torch.repeat_interleave() instead of np.repeat() * refactor: remove unused import, numpy * refactor: torch.range to torch.arange * update: tensor to list before appending the extra samples * update: concatenate the paddings with torch.cat |
||
---|---|---|
.. | ||
parsers | ||
__init__.py | ||
auto_augment.py | ||
config.py | ||
constants.py | ||
dataset.py | ||
dataset_factory.py | ||
distributed_sampler.py | ||
loader.py | ||
mixup.py | ||
random_erasing.py | ||
real_labels.py | ||
tf_preprocessing.py | ||
transforms.py | ||
transforms_factory.py |