33 lines
1.0 KiB
Python
33 lines
1.0 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class SpaceToDepth(nn.Module):
|
|
bs: torch.jit.Final[int]
|
|
|
|
def __init__(self, block_size=4):
|
|
super().__init__()
|
|
assert block_size == 4
|
|
self.bs = block_size
|
|
|
|
def forward(self, x):
|
|
N, C, H, W = x.size()
|
|
x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs)
|
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs)
|
|
x = x.view(N, C * self.bs * self.bs, H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs)
|
|
return x
|
|
|
|
|
|
class DepthToSpace(nn.Module):
|
|
|
|
def __init__(self, block_size):
|
|
super().__init__()
|
|
self.bs = block_size
|
|
|
|
def forward(self, x):
|
|
N, C, H, W = x.size()
|
|
x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W)
|
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs)
|
|
x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs)
|
|
return x
|