328 lines
12 KiB
Python
328 lines
12 KiB
Python
""" Adan Optimizer
|
|
|
|
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
|
|
https://arxiv.org/abs/2208.06677
|
|
|
|
Implementation adapted from https://github.com/sail-sg/Adan
|
|
"""
|
|
# Copyright 2022 Garena Online Private Limited
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.optim.optimizer import Optimizer
|
|
|
|
|
|
class MultiTensorApply(object):
|
|
available = False
|
|
warned = False
|
|
|
|
def __init__(self, chunk_size):
|
|
try:
|
|
MultiTensorApply.available = True
|
|
self.chunk_size = chunk_size
|
|
except ImportError as err:
|
|
MultiTensorApply.available = False
|
|
MultiTensorApply.import_err = err
|
|
|
|
def __call__(self, op, noop_flag_buffer, tensor_lists, *args):
|
|
return op(self.chunk_size, noop_flag_buffer, tensor_lists, *args)
|
|
|
|
|
|
class Adan(Optimizer):
|
|
""" Implements a pytorch variant of Adan.
|
|
|
|
Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
|
|
https://arxiv.org/abs/2208.06677
|
|
|
|
Arguments:
|
|
params: Iterable of parameters to optimize or dicts defining parameter groups.
|
|
lr: Learning rate.
|
|
betas: Coefficients used for first- and second-order moments.
|
|
eps: Term added to the denominator to improve numerical stability.
|
|
weight_decay: Decoupled weight decay (L2 penalty)
|
|
no_prox: How to perform the weight decay
|
|
caution: Enable caution from 'Cautious Optimizers'
|
|
foreach: If True would use torch._foreach implementation. Faster but uses slightly more memory.
|
|
"""
|
|
|
|
def __init__(self,
|
|
params,
|
|
lr: float = 1e-3,
|
|
betas: Tuple[float, float, float] = (0.98, 0.92, 0.99),
|
|
eps: float = 1e-8,
|
|
weight_decay: float = 0.0,
|
|
no_prox: bool = False,
|
|
caution: bool = False,
|
|
foreach: Optional[bool] = None,
|
|
):
|
|
if not 0.0 <= lr:
|
|
raise ValueError('Invalid learning rate: {}'.format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError('Invalid epsilon value: {}'.format(eps))
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
|
|
if not 0.0 <= betas[2] < 1.0:
|
|
raise ValueError('Invalid beta parameter at index 2: {}'.format(betas[2]))
|
|
|
|
defaults = dict(
|
|
lr=lr,
|
|
betas=betas,
|
|
eps=eps,
|
|
weight_decay=weight_decay,
|
|
no_prox=no_prox,
|
|
caution=caution,
|
|
foreach=foreach,
|
|
)
|
|
super().__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super(Adan, self).__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('no_prox', False)
|
|
group.setdefault('caution', False)
|
|
|
|
@torch.no_grad()
|
|
def restart_opt(self):
|
|
for group in self.param_groups:
|
|
group['step'] = 0
|
|
for p in group['params']:
|
|
if p.requires_grad:
|
|
state = self.state[p]
|
|
# State initialization
|
|
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = torch.zeros_like(p)
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
|
# Exponential moving average of gradient difference
|
|
state['exp_avg_diff'] = torch.zeros_like(p)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step."""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
try:
|
|
has_scalar_maximum = 'Scalar' in torch.ops.aten._foreach_maximum_.overloads()
|
|
except:
|
|
has_scalar_maximum = False
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_avg_sqs = []
|
|
exp_avg_diffs = []
|
|
neg_pre_grads = []
|
|
|
|
beta1, beta2, beta3 = group['betas']
|
|
# assume same step across group now to simplify things
|
|
# per parameter step can be easily supported by making it a tensor, or pass list into kernel
|
|
if 'step' in group:
|
|
group['step'] += 1
|
|
else:
|
|
group['step'] = 1
|
|
|
|
bias_correction1 = 1.0 - beta1 ** group['step']
|
|
bias_correction2 = 1.0 - beta2 ** group['step']
|
|
bias_correction3 = 1.0 - beta3 ** group['step']
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
params_with_grad.append(p)
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
if len(state) == 0:
|
|
state['exp_avg'] = torch.zeros_like(p)
|
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
|
state['exp_avg_diff'] = torch.zeros_like(p)
|
|
|
|
if 'neg_pre_grad' not in state or group['step'] == 1:
|
|
state['neg_pre_grad'] = -p.grad.clone()
|
|
|
|
exp_avgs.append(state['exp_avg'])
|
|
exp_avg_sqs.append(state['exp_avg_sq'])
|
|
exp_avg_diffs.append(state['exp_avg_diff'])
|
|
neg_pre_grads.append(state['neg_pre_grad'])
|
|
|
|
if not params_with_grad:
|
|
continue
|
|
|
|
if group['foreach'] is None:
|
|
use_foreach = not group['caution'] or has_scalar_maximum
|
|
else:
|
|
use_foreach = group['foreach']
|
|
|
|
if use_foreach:
|
|
func = _multi_tensor_adan
|
|
else:
|
|
func = _single_tensor_adan
|
|
|
|
func(
|
|
params_with_grad,
|
|
grads,
|
|
exp_avgs=exp_avgs,
|
|
exp_avg_sqs=exp_avg_sqs,
|
|
exp_avg_diffs=exp_avg_diffs,
|
|
neg_pre_grads=neg_pre_grads,
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
beta3=beta3,
|
|
bias_correction1=bias_correction1,
|
|
bias_correction2=bias_correction2,
|
|
bias_correction3_sqrt=math.sqrt(bias_correction3),
|
|
lr=group['lr'],
|
|
weight_decay=group['weight_decay'],
|
|
eps=group['eps'],
|
|
no_prox=group['no_prox'],
|
|
caution=group['caution'],
|
|
)
|
|
|
|
return loss
|
|
|
|
|
|
def _single_tensor_adan(
|
|
params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_avg_sqs: List[Tensor],
|
|
exp_avg_diffs: List[Tensor],
|
|
neg_pre_grads: List[Tensor],
|
|
*,
|
|
beta1: float,
|
|
beta2: float,
|
|
beta3: float,
|
|
bias_correction1: float,
|
|
bias_correction2: float,
|
|
bias_correction3_sqrt: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float,
|
|
no_prox: bool,
|
|
caution: bool,
|
|
):
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
exp_avg = exp_avgs[i]
|
|
exp_avg_sq = exp_avg_sqs[i]
|
|
exp_avg_diff = exp_avg_diffs[i]
|
|
neg_grad_or_diff = neg_pre_grads[i]
|
|
|
|
# for memory saving, we use `neg_grad_or_diff` to get some temp variable in an inplace way
|
|
neg_grad_or_diff.add_(grad)
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t
|
|
exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) # diff_t
|
|
|
|
neg_grad_or_diff.mul_(beta2).add_(grad)
|
|
exp_avg_sq.mul_(beta3).addcmul_(neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3) # n_t
|
|
|
|
denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps)
|
|
step_size_diff = lr * beta2 / bias_correction2
|
|
step_size = lr / bias_correction1
|
|
|
|
if caution:
|
|
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
|
|
mask = (exp_avg * grad > 0).to(grad.dtype)
|
|
mask.div_(mask.mean().clamp_(min=1e-3))
|
|
exp_avg = exp_avg * mask
|
|
|
|
if no_prox:
|
|
param.mul_(1 - lr * weight_decay)
|
|
param.addcdiv_(exp_avg, denom, value=-step_size)
|
|
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
|
|
else:
|
|
param.addcdiv_(exp_avg, denom, value=-step_size)
|
|
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
|
|
param.div_(1 + lr * weight_decay)
|
|
|
|
neg_grad_or_diff.zero_().add_(grad, alpha=-1.0)
|
|
|
|
|
|
def _multi_tensor_adan(
|
|
params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_avg_sqs: List[Tensor],
|
|
exp_avg_diffs: List[Tensor],
|
|
neg_pre_grads: List[Tensor],
|
|
*,
|
|
beta1: float,
|
|
beta2: float,
|
|
beta3: float,
|
|
bias_correction1: float,
|
|
bias_correction2: float,
|
|
bias_correction3_sqrt: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float,
|
|
no_prox: bool,
|
|
caution: bool,
|
|
):
|
|
if len(params) == 0:
|
|
return
|
|
|
|
# for memory saving, we use `neg_pre_grads` to get some temp variable in a inplace way
|
|
torch._foreach_add_(neg_pre_grads, grads)
|
|
|
|
torch._foreach_mul_(exp_avgs, beta1)
|
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t
|
|
|
|
torch._foreach_mul_(exp_avg_diffs, beta2)
|
|
torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) # diff_t
|
|
|
|
torch._foreach_mul_(neg_pre_grads, beta2)
|
|
torch._foreach_add_(neg_pre_grads, grads)
|
|
torch._foreach_mul_(exp_avg_sqs, beta3)
|
|
torch._foreach_addcmul_(exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3) # n_t
|
|
|
|
denom = torch._foreach_sqrt(exp_avg_sqs)
|
|
torch._foreach_div_(denom, bias_correction3_sqrt)
|
|
torch._foreach_add_(denom, eps)
|
|
|
|
step_size_diff = lr * beta2 / bias_correction2
|
|
step_size = lr / bias_correction1
|
|
|
|
if caution:
|
|
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
|
|
masks = torch._foreach_mul(exp_avgs, grads)
|
|
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)]
|
|
mask_scale = [m.mean() for m in masks]
|
|
torch._foreach_maximum_(mask_scale, 1e-3)
|
|
torch._foreach_div_(masks, mask_scale)
|
|
exp_avgs = torch._foreach_mul(exp_avgs, masks)
|
|
|
|
if no_prox:
|
|
torch._foreach_mul_(params, 1 - lr * weight_decay)
|
|
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
|
|
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
|
|
else:
|
|
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
|
|
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
|
|
torch._foreach_div_(params, 1 + lr * weight_decay)
|
|
|
|
torch._foreach_zero_(neg_pre_grads)
|
|
torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0)
|