425 lines
16 KiB
Python
425 lines
16 KiB
Python
"""Pytorch Densenet implementation w/ tweaks
|
|
This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with
|
|
fixed kwargs passthrough and addition of dynamic global avg/max pool.
|
|
"""
|
|
import re
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as cp
|
|
from torch.jit.annotations import List
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier
|
|
from ._builder import build_model_with_cfg
|
|
from ._manipulate import MATCH_PREV_GROUP
|
|
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
|
|
|
|
__all__ = ['DenseNet']
|
|
|
|
|
|
class DenseLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_input_features,
|
|
growth_rate,
|
|
bn_size,
|
|
norm_layer=BatchNormAct2d,
|
|
drop_rate=0.,
|
|
grad_checkpointing=False,
|
|
):
|
|
super(DenseLayer, self).__init__()
|
|
self.add_module('norm1', norm_layer(num_input_features)),
|
|
self.add_module('conv1', nn.Conv2d(
|
|
num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)),
|
|
self.add_module('norm2', norm_layer(bn_size * growth_rate)),
|
|
self.add_module('conv2', nn.Conv2d(
|
|
bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)),
|
|
self.drop_rate = float(drop_rate)
|
|
self.grad_checkpointing = grad_checkpointing
|
|
|
|
def bottleneck_fn(self, xs):
|
|
# type: (List[torch.Tensor]) -> torch.Tensor
|
|
concated_features = torch.cat(xs, 1)
|
|
bottleneck_output = self.conv1(self.norm1(concated_features)) # noqa: T484
|
|
return bottleneck_output
|
|
|
|
# todo: rewrite when torchscript supports any
|
|
def any_requires_grad(self, x):
|
|
# type: (List[torch.Tensor]) -> bool
|
|
for tensor in x:
|
|
if tensor.requires_grad:
|
|
return True
|
|
return False
|
|
|
|
@torch.jit.unused # noqa: T484
|
|
def call_checkpoint_bottleneck(self, x):
|
|
# type: (List[torch.Tensor]) -> torch.Tensor
|
|
def closure(*xs):
|
|
return self.bottleneck_fn(xs)
|
|
|
|
return cp.checkpoint(closure, *x)
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
def forward(self, x):
|
|
# type: (List[torch.Tensor]) -> (torch.Tensor)
|
|
pass
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
def forward(self, x):
|
|
# type: (torch.Tensor) -> (torch.Tensor)
|
|
pass
|
|
|
|
# torchscript does not yet support *args, so we overload method
|
|
# allowing it to take either a List[Tensor] or single Tensor
|
|
def forward(self, x): # noqa: F811
|
|
if isinstance(x, torch.Tensor):
|
|
prev_features = [x]
|
|
else:
|
|
prev_features = x
|
|
|
|
if self.grad_checkpointing and self.any_requires_grad(prev_features):
|
|
if torch.jit.is_scripting():
|
|
raise Exception("Memory Efficient not supported in JIT")
|
|
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
|
|
else:
|
|
bottleneck_output = self.bottleneck_fn(prev_features)
|
|
|
|
new_features = self.conv2(self.norm2(bottleneck_output))
|
|
if self.drop_rate > 0:
|
|
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
|
|
return new_features
|
|
|
|
|
|
class DenseBlock(nn.ModuleDict):
|
|
_version = 2
|
|
|
|
def __init__(
|
|
self,
|
|
num_layers,
|
|
num_input_features,
|
|
bn_size,
|
|
growth_rate,
|
|
norm_layer=BatchNormAct2d,
|
|
drop_rate=0.,
|
|
grad_checkpointing=False,
|
|
):
|
|
super(DenseBlock, self).__init__()
|
|
for i in range(num_layers):
|
|
layer = DenseLayer(
|
|
num_input_features + i * growth_rate,
|
|
growth_rate=growth_rate,
|
|
bn_size=bn_size,
|
|
norm_layer=norm_layer,
|
|
drop_rate=drop_rate,
|
|
grad_checkpointing=grad_checkpointing,
|
|
)
|
|
self.add_module('denselayer%d' % (i + 1), layer)
|
|
|
|
def forward(self, init_features):
|
|
features = [init_features]
|
|
for name, layer in self.items():
|
|
new_features = layer(features)
|
|
features.append(new_features)
|
|
return torch.cat(features, 1)
|
|
|
|
|
|
class DenseTransition(nn.Sequential):
|
|
def __init__(
|
|
self,
|
|
num_input_features,
|
|
num_output_features,
|
|
norm_layer=BatchNormAct2d,
|
|
aa_layer=None,
|
|
):
|
|
super(DenseTransition, self).__init__()
|
|
self.add_module('norm', norm_layer(num_input_features))
|
|
self.add_module('conv', nn.Conv2d(
|
|
num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
|
|
if aa_layer is not None:
|
|
self.add_module('pool', aa_layer(num_output_features, stride=2))
|
|
else:
|
|
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
|
|
|
|
|
|
class DenseNet(nn.Module):
|
|
r"""Densenet-BC model class, based on
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
|
|
|
|
Args:
|
|
growth_rate (int) - how many filters to add each layer (`k` in paper)
|
|
block_config (list of 4 ints) - how many layers in each pooling block
|
|
bn_size (int) - multiplicative factor for number of bottle neck layers
|
|
(i.e. bn_size * k features in the bottleneck layer)
|
|
drop_rate (float) - dropout rate before classifier layer
|
|
proj_drop_rate (float) - dropout rate after each dense layer
|
|
num_classes (int) - number of classification classes
|
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
growth_rate=32,
|
|
block_config=(6, 12, 24, 16),
|
|
num_classes=1000,
|
|
in_chans=3,
|
|
global_pool='avg',
|
|
bn_size=4,
|
|
stem_type='',
|
|
act_layer='relu',
|
|
norm_layer='batchnorm2d',
|
|
aa_layer=None,
|
|
drop_rate=0.,
|
|
proj_drop_rate=0.,
|
|
memory_efficient=False,
|
|
aa_stem_only=True,
|
|
):
|
|
self.num_classes = num_classes
|
|
super(DenseNet, self).__init__()
|
|
norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer)
|
|
|
|
# Stem
|
|
deep_stem = 'deep' in stem_type # 3x3 deep stem
|
|
num_init_features = growth_rate * 2
|
|
if aa_layer is None:
|
|
stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
else:
|
|
stem_pool = nn.Sequential(*[
|
|
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
|
|
aa_layer(channels=num_init_features, stride=2)])
|
|
if deep_stem:
|
|
stem_chs_1 = stem_chs_2 = growth_rate
|
|
if 'tiered' in stem_type:
|
|
stem_chs_1 = 3 * (growth_rate // 4)
|
|
stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4)
|
|
self.features = nn.Sequential(OrderedDict([
|
|
('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)),
|
|
('norm0', norm_layer(stem_chs_1)),
|
|
('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)),
|
|
('norm1', norm_layer(stem_chs_2)),
|
|
('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)),
|
|
('norm2', norm_layer(num_init_features)),
|
|
('pool0', stem_pool),
|
|
]))
|
|
else:
|
|
self.features = nn.Sequential(OrderedDict([
|
|
('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
|
|
('norm0', norm_layer(num_init_features)),
|
|
('pool0', stem_pool),
|
|
]))
|
|
self.feature_info = [
|
|
dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')]
|
|
current_stride = 4
|
|
|
|
# DenseBlocks
|
|
num_features = num_init_features
|
|
for i, num_layers in enumerate(block_config):
|
|
block = DenseBlock(
|
|
num_layers=num_layers,
|
|
num_input_features=num_features,
|
|
bn_size=bn_size,
|
|
growth_rate=growth_rate,
|
|
norm_layer=norm_layer,
|
|
drop_rate=proj_drop_rate,
|
|
grad_checkpointing=memory_efficient,
|
|
)
|
|
module_name = f'denseblock{(i + 1)}'
|
|
self.features.add_module(module_name, block)
|
|
num_features = num_features + num_layers * growth_rate
|
|
transition_aa_layer = None if aa_stem_only else aa_layer
|
|
if i != len(block_config) - 1:
|
|
self.feature_info += [
|
|
dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)]
|
|
current_stride *= 2
|
|
trans = DenseTransition(
|
|
num_input_features=num_features,
|
|
num_output_features=num_features // 2,
|
|
norm_layer=norm_layer,
|
|
aa_layer=transition_aa_layer,
|
|
)
|
|
self.features.add_module(f'transition{i + 1}', trans)
|
|
num_features = num_features // 2
|
|
|
|
# Final batch norm
|
|
self.features.add_module('norm5', norm_layer(num_features))
|
|
|
|
self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')]
|
|
self.num_features = self.head_hidden_size = num_features
|
|
|
|
# Linear layer
|
|
global_pool, classifier = create_classifier(
|
|
self.num_features,
|
|
self.num_classes,
|
|
pool_type=global_pool,
|
|
)
|
|
self.global_pool = global_pool
|
|
self.head_drop = nn.Dropout(drop_rate)
|
|
self.classifier = classifier
|
|
|
|
# Official init from torch repo.
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
matcher = dict(
|
|
stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]',
|
|
blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [
|
|
(r'^features\.denseblock(\d+)\.denselayer(\d+)', None),
|
|
(r'^features\.transition(\d+)', MATCH_PREV_GROUP) # FIXME combine with previous denselayer
|
|
]
|
|
)
|
|
return matcher
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
for b in self.features.modules():
|
|
if isinstance(b, DenseLayer):
|
|
b.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self) -> nn.Module:
|
|
return self.classifier
|
|
|
|
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
|
self.num_classes = num_classes
|
|
self.global_pool, self.classifier = create_classifier(
|
|
self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
def forward_features(self, x):
|
|
return self.features(x)
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
x = self.global_pool(x)
|
|
x = self.head_drop(x)
|
|
return x if pre_logits else self.classifier(x)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _filter_torchvision_pretrained(state_dict):
|
|
pattern = re.compile(
|
|
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
|
|
|
|
for key in list(state_dict.keys()):
|
|
res = pattern.match(key)
|
|
if res:
|
|
new_key = res.group(1) + res.group(2)
|
|
state_dict[new_key] = state_dict[key]
|
|
del state_dict[key]
|
|
return state_dict
|
|
|
|
|
|
def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs):
|
|
kwargs['growth_rate'] = growth_rate
|
|
kwargs['block_config'] = block_config
|
|
return build_model_with_cfg(
|
|
DenseNet,
|
|
variant,
|
|
pretrained,
|
|
feature_cfg=dict(flatten_sequential=True),
|
|
pretrained_filter_fn=_filter_torchvision_pretrained,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs,
|
|
}
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
'densenet121.ra_in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
'densenetblur121d.ra_in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
test_input_size=(3, 288, 288), test_crop_pct=0.95),
|
|
'densenet264d.untrained': _cfg(),
|
|
'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'),
|
|
'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'),
|
|
'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'),
|
|
'densenet161.tv_in1k': _cfg(hf_hub_id='timm/'),
|
|
})
|
|
|
|
|
|
@register_model
|
|
def densenet121(pretrained=False, **kwargs) -> DenseNet:
|
|
r"""Densenet-121 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
"""
|
|
model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16))
|
|
model = _create_densenet('densenet121', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def densenetblur121d(pretrained=False, **kwargs) -> DenseNet:
|
|
r"""Densenet-121 w/ blur-pooling & 3-layer 3x3 stem
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
"""
|
|
model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', aa_layer=BlurPool2d)
|
|
model = _create_densenet('densenetblur121d', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def densenet169(pretrained=False, **kwargs) -> DenseNet:
|
|
r"""Densenet-169 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
"""
|
|
model_args = dict(growth_rate=32, block_config=(6, 12, 32, 32))
|
|
model = _create_densenet('densenet169', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def densenet201(pretrained=False, **kwargs) -> DenseNet:
|
|
r"""Densenet-201 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
"""
|
|
model_args = dict(growth_rate=32, block_config=(6, 12, 48, 32))
|
|
model = _create_densenet('densenet201', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def densenet161(pretrained=False, **kwargs) -> DenseNet:
|
|
r"""Densenet-161 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
"""
|
|
model_args = dict(growth_rate=48, block_config=(6, 12, 36, 24))
|
|
model = _create_densenet('densenet161', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def densenet264d(pretrained=False, **kwargs) -> DenseNet:
|
|
r"""Densenet-264 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
|
|
"""
|
|
model_args = dict(growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep')
|
|
model = _create_densenet('densenet264d', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
return model
|
|
|
|
|
|
register_model_deprecations(__name__, {
|
|
'tv_densenet121': 'densenet121.tv_in1k',
|
|
})
|