326 lines
11 KiB
Python
326 lines
11 KiB
Python
""" Pytorch Inception-V4 implementation
|
|
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
|
|
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
|
|
"""
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
from timm.layers import create_classifier, ConvNormAct
|
|
from ._builder import build_model_with_cfg
|
|
from ._registry import register_model, generate_default_cfgs
|
|
|
|
__all__ = ['InceptionV4']
|
|
|
|
|
|
class Mixed3a(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(Mixed3a, self).__init__()
|
|
self.maxpool = nn.MaxPool2d(3, stride=2)
|
|
self.conv = conv_block(64, 96, kernel_size=3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.maxpool(x)
|
|
x1 = self.conv(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class Mixed4a(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(Mixed4a, self).__init__()
|
|
|
|
self.branch0 = nn.Sequential(
|
|
conv_block(160, 64, kernel_size=1, stride=1),
|
|
conv_block(64, 96, kernel_size=3, stride=1)
|
|
)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
conv_block(160, 64, kernel_size=1, stride=1),
|
|
conv_block(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
conv_block(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
conv_block(64, 96, kernel_size=(3, 3), stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class Mixed5a(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(Mixed5a, self).__init__()
|
|
self.conv = conv_block(192, 192, kernel_size=3, stride=2)
|
|
self.maxpool = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.conv(x)
|
|
x1 = self.maxpool(x)
|
|
out = torch.cat((x0, x1), 1)
|
|
return out
|
|
|
|
|
|
class InceptionA(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(InceptionA, self).__init__()
|
|
self.branch0 = conv_block(384, 96, kernel_size=1, stride=1)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
conv_block(384, 64, kernel_size=1, stride=1),
|
|
conv_block(64, 96, kernel_size=3, stride=1, padding=1)
|
|
)
|
|
|
|
self.branch2 = nn.Sequential(
|
|
conv_block(384, 64, kernel_size=1, stride=1),
|
|
conv_block(64, 96, kernel_size=3, stride=1, padding=1),
|
|
conv_block(96, 96, kernel_size=3, stride=1, padding=1)
|
|
)
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
conv_block(384, 96, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
x3 = self.branch3(x)
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class ReductionA(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(ReductionA, self).__init__()
|
|
self.branch0 = conv_block(384, 384, kernel_size=3, stride=2)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
conv_block(384, 192, kernel_size=1, stride=1),
|
|
conv_block(192, 224, kernel_size=3, stride=1, padding=1),
|
|
conv_block(224, 256, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
return out
|
|
|
|
|
|
class InceptionB(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(InceptionB, self).__init__()
|
|
self.branch0 = conv_block(1024, 384, kernel_size=1, stride=1)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
conv_block(1024, 192, kernel_size=1, stride=1),
|
|
conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
conv_block(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0))
|
|
)
|
|
|
|
self.branch2 = nn.Sequential(
|
|
conv_block(1024, 192, kernel_size=1, stride=1),
|
|
conv_block(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
conv_block(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
conv_block(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3))
|
|
)
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
conv_block(1024, 128, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
x3 = self.branch3(x)
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class ReductionB(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(ReductionB, self).__init__()
|
|
|
|
self.branch0 = nn.Sequential(
|
|
conv_block(1024, 192, kernel_size=1, stride=1),
|
|
conv_block(192, 192, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch1 = nn.Sequential(
|
|
conv_block(1024, 256, kernel_size=1, stride=1),
|
|
conv_block(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)),
|
|
conv_block(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)),
|
|
conv_block(320, 320, kernel_size=3, stride=2)
|
|
)
|
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
x1 = self.branch1(x)
|
|
x2 = self.branch2(x)
|
|
out = torch.cat((x0, x1, x2), 1)
|
|
return out
|
|
|
|
|
|
class InceptionC(nn.Module):
|
|
def __init__(self, conv_block=ConvNormAct):
|
|
super(InceptionC, self).__init__()
|
|
|
|
self.branch0 = conv_block(1536, 256, kernel_size=1, stride=1)
|
|
|
|
self.branch1_0 = conv_block(1536, 384, kernel_size=1, stride=1)
|
|
self.branch1_1a = conv_block(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch1_1b = conv_block(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
|
|
self.branch2_0 = conv_block(1536, 384, kernel_size=1, stride=1)
|
|
self.branch2_1 = conv_block(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
self.branch2_2 = conv_block(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch2_3a = conv_block(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1))
|
|
self.branch2_3b = conv_block(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0))
|
|
|
|
self.branch3 = nn.Sequential(
|
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False),
|
|
conv_block(1536, 256, kernel_size=1, stride=1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x0 = self.branch0(x)
|
|
|
|
x1_0 = self.branch1_0(x)
|
|
x1_1a = self.branch1_1a(x1_0)
|
|
x1_1b = self.branch1_1b(x1_0)
|
|
x1 = torch.cat((x1_1a, x1_1b), 1)
|
|
|
|
x2_0 = self.branch2_0(x)
|
|
x2_1 = self.branch2_1(x2_0)
|
|
x2_2 = self.branch2_2(x2_1)
|
|
x2_3a = self.branch2_3a(x2_2)
|
|
x2_3b = self.branch2_3b(x2_2)
|
|
x2 = torch.cat((x2_3a, x2_3b), 1)
|
|
|
|
x3 = self.branch3(x)
|
|
|
|
out = torch.cat((x0, x1, x2, x3), 1)
|
|
return out
|
|
|
|
|
|
class InceptionV4(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_classes=1000,
|
|
in_chans=3,
|
|
output_stride=32,
|
|
drop_rate=0.,
|
|
global_pool='avg',
|
|
norm_layer='batchnorm2d',
|
|
norm_eps=1e-3,
|
|
act_layer='relu',
|
|
):
|
|
super(InceptionV4, self).__init__()
|
|
assert output_stride == 32
|
|
self.num_classes = num_classes
|
|
self.num_features = self.head_hidden_size = 1536
|
|
conv_block = partial(
|
|
ConvNormAct,
|
|
padding=0,
|
|
norm_layer=norm_layer,
|
|
act_layer=act_layer,
|
|
norm_kwargs=dict(eps=norm_eps),
|
|
act_kwargs=dict(inplace=True),
|
|
)
|
|
|
|
features = [
|
|
conv_block(in_chans, 32, kernel_size=3, stride=2),
|
|
conv_block(32, 32, kernel_size=3, stride=1),
|
|
conv_block(32, 64, kernel_size=3, stride=1, padding=1),
|
|
Mixed3a(conv_block),
|
|
Mixed4a(conv_block),
|
|
Mixed5a(conv_block),
|
|
]
|
|
features += [InceptionA(conv_block) for _ in range(4)]
|
|
features += [ReductionA(conv_block)] # Mixed6a
|
|
features += [InceptionB(conv_block) for _ in range(7)]
|
|
features += [ReductionB(conv_block)] # Mixed7a
|
|
features += [InceptionC(conv_block) for _ in range(3)]
|
|
self.features = nn.Sequential(*features)
|
|
self.feature_info = [
|
|
dict(num_chs=64, reduction=2, module='features.2'),
|
|
dict(num_chs=160, reduction=4, module='features.3'),
|
|
dict(num_chs=384, reduction=8, module='features.9'),
|
|
dict(num_chs=1024, reduction=16, module='features.17'),
|
|
dict(num_chs=1536, reduction=32, module='features.21'),
|
|
]
|
|
self.global_pool, self.head_drop, self.last_linear = create_classifier(
|
|
self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
return dict(
|
|
stem=r'^features\.[012]\.',
|
|
blocks=r'^features\.(\d+)'
|
|
)
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
assert not enable, 'gradient checkpointing not supported'
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self) -> nn.Module:
|
|
return self.last_linear
|
|
|
|
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
|
self.num_classes = num_classes
|
|
self.global_pool, self.last_linear = create_classifier(
|
|
self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
def forward_features(self, x):
|
|
return self.features(x)
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
x = self.global_pool(x)
|
|
x = self.head_drop(x)
|
|
return x if pre_logits else self.last_linear(x)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _create_inception_v4(variant, pretrained=False, **kwargs) -> InceptionV4:
|
|
return build_model_with_cfg(
|
|
InceptionV4,
|
|
variant,
|
|
pretrained,
|
|
feature_cfg=dict(flatten_sequential=True),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
'inception_v4.tf_in1k': {
|
|
'hf_hub_id': 'timm/',
|
|
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
'first_conv': 'features.0.conv', 'classifier': 'last_linear',
|
|
}
|
|
})
|
|
|
|
|
|
@register_model
|
|
def inception_v4(pretrained=False, **kwargs):
|
|
return _create_inception_v4('inception_v4', pretrained, **kwargs)
|