347 lines
12 KiB
Python
347 lines
12 KiB
Python
"""
|
|
TResNet: High Performance GPU-Dedicated Architecture
|
|
https://arxiv.org/pdf/2003.13630.pdf
|
|
|
|
Original model: https://github.com/mrT23/TResNet
|
|
|
|
"""
|
|
from collections import OrderedDict
|
|
from functools import partial
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule, ConvNormAct, DropPath
|
|
from ._builder import build_model_with_cfg
|
|
from ._manipulate import checkpoint_seq
|
|
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
|
|
|
|
__all__ = ['TResNet'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(
|
|
self,
|
|
inplanes,
|
|
planes,
|
|
stride=1,
|
|
downsample=None,
|
|
use_se=True,
|
|
aa_layer=None,
|
|
drop_path_rate=0.
|
|
):
|
|
super(BasicBlock, self).__init__()
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
act_layer = partial(nn.LeakyReLU, negative_slope=1e-3)
|
|
|
|
self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer)
|
|
self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False)
|
|
self.act = nn.ReLU(inplace=True)
|
|
|
|
rd_chs = max(planes * self.expansion // 4, 64)
|
|
self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
if self.downsample is not None:
|
|
shortcut = self.downsample(x)
|
|
else:
|
|
shortcut = x
|
|
out = self.conv1(x)
|
|
out = self.conv2(out)
|
|
if self.se is not None:
|
|
out = self.se(out)
|
|
out = self.drop_path(out) + shortcut
|
|
out = self.act(out)
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(
|
|
self,
|
|
inplanes,
|
|
planes,
|
|
stride=1,
|
|
downsample=None,
|
|
use_se=True,
|
|
act_layer=None,
|
|
aa_layer=None,
|
|
drop_path_rate=0.,
|
|
):
|
|
super(Bottleneck, self).__init__()
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3)
|
|
|
|
self.conv1 = ConvNormAct(
|
|
inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer)
|
|
self.conv2 = ConvNormAct(
|
|
planes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer)
|
|
|
|
reduction_chs = max(planes * self.expansion // 8, 64)
|
|
self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None
|
|
|
|
self.conv3 = ConvNormAct(
|
|
planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False)
|
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
|
self.act = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
if self.downsample is not None:
|
|
shortcut = self.downsample(x)
|
|
else:
|
|
shortcut = x
|
|
out = self.conv1(x)
|
|
out = self.conv2(out)
|
|
if self.se is not None:
|
|
out = self.se(out)
|
|
out = self.conv3(out)
|
|
out = self.drop_path(out) + shortcut
|
|
out = self.act(out)
|
|
return out
|
|
|
|
|
|
class TResNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
layers,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
width_factor=1.0,
|
|
v2=False,
|
|
global_pool='fast',
|
|
drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
):
|
|
self.num_classes = num_classes
|
|
self.drop_rate = drop_rate
|
|
self.grad_checkpointing = False
|
|
super(TResNet, self).__init__()
|
|
|
|
aa_layer = BlurPool2d
|
|
act_layer = nn.LeakyReLU
|
|
|
|
# TResnet stages
|
|
self.inplanes = int(64 * width_factor)
|
|
self.planes = int(64 * width_factor)
|
|
if v2:
|
|
self.inplanes = self.inplanes // 8 * 8
|
|
self.planes = self.planes // 8 * 8
|
|
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)]
|
|
conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer)
|
|
layer1 = self._make_layer(
|
|
Bottleneck if v2 else BasicBlock,
|
|
self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0])
|
|
layer2 = self._make_layer(
|
|
Bottleneck if v2 else BasicBlock,
|
|
self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1])
|
|
layer3 = self._make_layer(
|
|
Bottleneck,
|
|
self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2])
|
|
layer4 = self._make_layer(
|
|
Bottleneck,
|
|
self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3])
|
|
|
|
# body
|
|
self.body = nn.Sequential(OrderedDict([
|
|
('s2d', SpaceToDepth()),
|
|
('conv1', conv1),
|
|
('layer1', layer1),
|
|
('layer2', layer2),
|
|
('layer3', layer3),
|
|
('layer4', layer4),
|
|
]))
|
|
|
|
self.feature_info = [
|
|
dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D?
|
|
dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'),
|
|
dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'),
|
|
dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'),
|
|
dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'),
|
|
]
|
|
|
|
# head
|
|
self.num_features = self.head_hidden_size = (self.planes * 8) * Bottleneck.expansion
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
|
|
|
# model initialization
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
|
|
if isinstance(m, nn.Linear):
|
|
m.weight.data.normal_(0, 0.01)
|
|
|
|
# residual connections special initialization
|
|
for m in self.modules():
|
|
if isinstance(m, BasicBlock):
|
|
nn.init.zeros_(m.conv2.bn.weight)
|
|
if isinstance(m, Bottleneck):
|
|
nn.init.zeros_(m.conv3.bn.weight)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
layers = []
|
|
if stride == 2:
|
|
# avg pooling before 1x1 conv
|
|
layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False))
|
|
layers += [ConvNormAct(
|
|
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False)]
|
|
downsample = nn.Sequential(*layers)
|
|
|
|
layers = []
|
|
for i in range(blocks):
|
|
layers.append(block(
|
|
self.inplanes,
|
|
planes,
|
|
stride=stride if i == 0 else 1,
|
|
downsample=downsample if i == 0 else None,
|
|
use_se=use_se,
|
|
aa_layer=aa_layer,
|
|
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate,
|
|
))
|
|
self.inplanes = planes * block.expansion
|
|
return nn.Sequential(*layers)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)')
|
|
return matcher
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
self.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self) -> nn.Module:
|
|
return self.head.fc
|
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
|
self.num_classes = num_classes
|
|
self.head.reset(num_classes, pool_type=global_pool)
|
|
|
|
def forward_features(self, x):
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = self.body.s2d(x)
|
|
x = self.body.conv1(x)
|
|
x = checkpoint_seq([
|
|
self.body.layer1,
|
|
self.body.layer2,
|
|
self.body.layer3,
|
|
self.body.layer4],
|
|
x, flatten=True)
|
|
else:
|
|
x = self.body(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
if 'body.conv1.conv.weight' in state_dict:
|
|
return state_dict
|
|
|
|
import re
|
|
state_dict = state_dict.get('model', state_dict)
|
|
state_dict = state_dict.get('state_dict', state_dict)
|
|
out_dict = {}
|
|
for k, v in state_dict.items():
|
|
k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k)
|
|
k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k)
|
|
k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k)
|
|
k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k)
|
|
k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k)
|
|
k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k)
|
|
if k.endswith('bn.weight'):
|
|
# convert weight from inplace_abn to batchnorm
|
|
v = v.abs().add(1e-5)
|
|
out_dict[k] = v
|
|
return out_dict
|
|
|
|
|
|
def _create_tresnet(variant, pretrained=False, **kwargs):
|
|
return build_model_with_cfg(
|
|
TResNet,
|
|
variant,
|
|
pretrained,
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
'mean': (0., 0., 0.), 'std': (1., 1., 1.),
|
|
'first_conv': 'body.conv1.conv', 'classifier': 'head.fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
|
|
'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
|
|
'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'),
|
|
'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'),
|
|
'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'),
|
|
'tresnet_m.miil_in1k_448': _cfg(
|
|
input_size=(3, 448, 448), pool_size=(14, 14),
|
|
hf_hub_id='timm/'),
|
|
'tresnet_l.miil_in1k_448': _cfg(
|
|
input_size=(3, 448, 448), pool_size=(14, 14),
|
|
hf_hub_id='timm/'),
|
|
'tresnet_xl.miil_in1k_448': _cfg(
|
|
input_size=(3, 448, 448), pool_size=(14, 14),
|
|
hf_hub_id='timm/'),
|
|
|
|
'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
|
|
'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
|
|
})
|
|
|
|
|
|
@register_model
|
|
def tresnet_m(pretrained=False, **kwargs) -> TResNet:
|
|
model_args = dict(layers=[3, 4, 11, 3])
|
|
return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def tresnet_l(pretrained=False, **kwargs) -> TResNet:
|
|
model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2)
|
|
return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def tresnet_xl(pretrained=False, **kwargs) -> TResNet:
|
|
model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3)
|
|
return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet:
|
|
model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True)
|
|
return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
register_model_deprecations(__name__, {
|
|
'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k',
|
|
'tresnet_m_448': 'tresnet_m.miil_in1k_448',
|
|
'tresnet_l_448': 'tresnet_l.miil_in1k_448',
|
|
'tresnet_xl_448': 'tresnet_xl.miil_in1k_448',
|
|
}) |