pytorch-image-models/timm/models/tresnet.py

347 lines
12 KiB
Python

"""
TResNet: High Performance GPU-Dedicated Architecture
https://arxiv.org/pdf/2003.13630.pdf
Original model: https://github.com/mrT23/TResNet
"""
from collections import OrderedDict
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule, ConvNormAct, DropPath
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
__all__ = ['TResNet'] # model_registry will add each entrypoint fn to this
class BasicBlock(nn.Module):
expansion = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
use_se=True,
aa_layer=None,
drop_path_rate=0.
):
super(BasicBlock, self).__init__()
self.downsample = downsample
self.stride = stride
act_layer = partial(nn.LeakyReLU, negative_slope=1e-3)
self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer)
self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False)
self.act = nn.ReLU(inplace=True)
rd_chs = max(planes * self.expansion // 4, 64)
self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
def forward(self, x):
if self.downsample is not None:
shortcut = self.downsample(x)
else:
shortcut = x
out = self.conv1(x)
out = self.conv2(out)
if self.se is not None:
out = self.se(out)
out = self.drop_path(out) + shortcut
out = self.act(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
use_se=True,
act_layer=None,
aa_layer=None,
drop_path_rate=0.,
):
super(Bottleneck, self).__init__()
self.downsample = downsample
self.stride = stride
act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3)
self.conv1 = ConvNormAct(
inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer)
self.conv2 = ConvNormAct(
planes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer)
reduction_chs = max(planes * self.expansion // 8, 64)
self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None
self.conv3 = ConvNormAct(
planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
self.act = nn.ReLU(inplace=True)
def forward(self, x):
if self.downsample is not None:
shortcut = self.downsample(x)
else:
shortcut = x
out = self.conv1(x)
out = self.conv2(out)
if self.se is not None:
out = self.se(out)
out = self.conv3(out)
out = self.drop_path(out) + shortcut
out = self.act(out)
return out
class TResNet(nn.Module):
def __init__(
self,
layers,
in_chans=3,
num_classes=1000,
width_factor=1.0,
v2=False,
global_pool='fast',
drop_rate=0.,
drop_path_rate=0.,
):
self.num_classes = num_classes
self.drop_rate = drop_rate
self.grad_checkpointing = False
super(TResNet, self).__init__()
aa_layer = BlurPool2d
act_layer = nn.LeakyReLU
# TResnet stages
self.inplanes = int(64 * width_factor)
self.planes = int(64 * width_factor)
if v2:
self.inplanes = self.inplanes // 8 * 8
self.planes = self.planes // 8 * 8
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)]
conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer)
layer1 = self._make_layer(
Bottleneck if v2 else BasicBlock,
self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0])
layer2 = self._make_layer(
Bottleneck if v2 else BasicBlock,
self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1])
layer3 = self._make_layer(
Bottleneck,
self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2])
layer4 = self._make_layer(
Bottleneck,
self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3])
# body
self.body = nn.Sequential(OrderedDict([
('s2d', SpaceToDepth()),
('conv1', conv1),
('layer1', layer1),
('layer2', layer2),
('layer3', layer3),
('layer4', layer4),
]))
self.feature_info = [
dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D?
dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'),
dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'),
dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'),
dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'),
]
# head
self.num_features = self.head_hidden_size = (self.planes * 8) * Bottleneck.expansion
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
# model initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
if isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
# residual connections special initialization
for m in self.modules():
if isinstance(m, BasicBlock):
nn.init.zeros_(m.conv2.bn.weight)
if isinstance(m, Bottleneck):
nn.init.zeros_(m.conv3.bn.weight)
def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
layers = []
if stride == 2:
# avg pooling before 1x1 conv
layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False))
layers += [ConvNormAct(
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False)]
downsample = nn.Sequential(*layers)
layers = []
for i in range(blocks):
layers.append(block(
self.inplanes,
planes,
stride=stride if i == 0 else 1,
downsample=downsample if i == 0 else None,
use_se=use_se,
aa_layer=aa_layer,
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate,
))
self.inplanes = planes * block.expansion
return nn.Sequential(*layers)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)')
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, pool_type=global_pool)
def forward_features(self, x):
if self.grad_checkpointing and not torch.jit.is_scripting():
x = self.body.s2d(x)
x = self.body.conv1(x)
x = checkpoint_seq([
self.body.layer1,
self.body.layer2,
self.body.layer3,
self.body.layer4],
x, flatten=True)
else:
x = self.body(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model):
if 'body.conv1.conv.weight' in state_dict:
return state_dict
import re
state_dict = state_dict.get('model', state_dict)
state_dict = state_dict.get('state_dict', state_dict)
out_dict = {}
for k, v in state_dict.items():
k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k)
k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k)
k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k)
k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k)
k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k)
k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k)
if k.endswith('bn.weight'):
# convert weight from inplace_abn to batchnorm
v = v.abs().add(1e-5)
out_dict[k] = v
return out_dict
def _create_tresnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
TResNet,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True),
**kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': (0., 0., 0.), 'std': (1., 1., 1.),
'first_conv': 'body.conv1.conv', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_m.miil_in1k_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
hf_hub_id='timm/'),
'tresnet_l.miil_in1k_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
hf_hub_id='timm/'),
'tresnet_xl.miil_in1k_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
hf_hub_id='timm/'),
'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
})
@register_model
def tresnet_m(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[3, 4, 11, 3])
return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def tresnet_l(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2)
return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def tresnet_xl(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3)
return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet:
model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True)
return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs))
register_model_deprecations(__name__, {
'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k',
'tresnet_m_448': 'tresnet_m.miil_in1k_448',
'tresnet_l_448': 'tresnet_l.miil_in1k_448',
'tresnet_xl_448': 'tresnet_xl.miil_in1k_448',
})