pytorch-image-models/timm/models/xcit.py

1004 lines
41 KiB
Python

""" Cross-Covariance Image Transformer (XCiT) in PyTorch
Paper:
- https://arxiv.org/abs/2106.09681
Same as the official implementation, with some minor adaptations, original copyright below
- https://github.com/facebookresearch/xcit/blob/master/xcit.py
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import math
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, trunc_normal_, to_2tuple, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._features_fx import register_notrace_module
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
from .cait import ClassAttn
from .vision_transformer import Mlp
__all__ = ['Xcit'] # model_registry will add each entrypoint fn to this
@register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method
class PositionalEncodingFourier(nn.Module):
"""
Positional encoding relying on a fourier kernel matching the one used in the "Attention is all you Need" paper.
Based on the official XCiT code
- https://github.com/facebookresearch/xcit/blob/master/xcit.py
"""
def __init__(self, hidden_dim=32, dim=768, temperature=10000):
super().__init__()
self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1)
self.scale = 2 * math.pi
self.temperature = temperature
self.hidden_dim = hidden_dim
self.dim = dim
self.eps = 1e-6
def forward(self, B: int, H: int, W: int):
device = self.token_projection.weight.device
dtype = self.token_projection.weight.dtype
y_embed = torch.arange(1, H + 1, device=device).to(torch.float32).unsqueeze(1).repeat(1, 1, W)
x_embed = torch.arange(1, W + 1, device=device).to(torch.float32).repeat(1, H, 1)
y_embed = y_embed / (y_embed[:, -1:, :] + self.eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + self.eps) * self.scale
dim_t = torch.arange(self.hidden_dim, device=device).to(torch.float32)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack([pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()], dim=4).flatten(3)
pos_y = torch.stack([pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()], dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
pos = self.token_projection(pos.to(dtype))
return pos.repeat(B, 1, 1, 1) # (B, C, H, W)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution + batch norm"""
return torch.nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_planes)
)
class ConvPatchEmbed(nn.Module):
"""Image to Patch Embedding using multiple convolutional layers"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, act_layer=nn.GELU):
super().__init__()
img_size = to_2tuple(img_size)
num_patches = (img_size[1] // patch_size) * (img_size[0] // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
if patch_size == 16:
self.proj = torch.nn.Sequential(
conv3x3(in_chans, embed_dim // 8, 2),
act_layer(),
conv3x3(embed_dim // 8, embed_dim // 4, 2),
act_layer(),
conv3x3(embed_dim // 4, embed_dim // 2, 2),
act_layer(),
conv3x3(embed_dim // 2, embed_dim, 2),
)
elif patch_size == 8:
self.proj = torch.nn.Sequential(
conv3x3(in_chans, embed_dim // 4, 2),
act_layer(),
conv3x3(embed_dim // 4, embed_dim // 2, 2),
act_layer(),
conv3x3(embed_dim // 2, embed_dim, 2),
)
else:
raise('For convolutional projection, patch size has to be in [8, 16]')
def forward(self, x):
x = self.proj(x)
Hp, Wp = x.shape[2], x.shape[3]
x = x.flatten(2).transpose(1, 2) # (B, N, C)
return x, (Hp, Wp)
class LPI(nn.Module):
"""
Local Patch Interaction module that allows explicit communication between tokens in 3x3 windows to augment the
implicit communication performed by the block diagonal scatter attention. Implemented using 2 layers of separable
3x3 convolutions with GeLU and BatchNorm2d
"""
def __init__(self, in_features, out_features=None, act_layer=nn.GELU, kernel_size=3):
super().__init__()
out_features = out_features or in_features
padding = kernel_size // 2
self.conv1 = torch.nn.Conv2d(
in_features, in_features, kernel_size=kernel_size, padding=padding, groups=in_features)
self.act = act_layer()
self.bn = nn.BatchNorm2d(in_features)
self.conv2 = torch.nn.Conv2d(
in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features)
def forward(self, x, H: int, W: int):
B, N, C = x.shape
x = x.permute(0, 2, 1).reshape(B, C, H, W)
x = self.conv1(x)
x = self.act(x)
x = self.bn(x)
x = self.conv2(x)
x = x.reshape(B, C, N).permute(0, 2, 1)
return x
class ClassAttentionBlock(nn.Module):
"""Class Attention Layer as in CaiT https://arxiv.org/abs/2103.17239"""
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
eta=1.,
tokens_norm=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = ClassAttn(
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop)
if eta is not None: # LayerScale Initialization (no layerscale when None)
self.gamma1 = nn.Parameter(eta * torch.ones(dim))
self.gamma2 = nn.Parameter(eta * torch.ones(dim))
else:
self.gamma1, self.gamma2 = 1.0, 1.0
# See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721
self.tokens_norm = tokens_norm
def forward(self, x):
x_norm1 = self.norm1(x)
x_attn = torch.cat([self.attn(x_norm1), x_norm1[:, 1:]], dim=1)
x = x + self.drop_path(self.gamma1 * x_attn)
if self.tokens_norm:
x = self.norm2(x)
else:
x = torch.cat([self.norm2(x[:, 0:1]), x[:, 1:]], dim=1)
x_res = x
cls_token = x[:, 0:1]
cls_token = self.gamma2 * self.mlp(cls_token)
x = torch.cat([cls_token, x[:, 1:]], dim=1)
x = x_res + self.drop_path(x)
return x
class XCA(nn.Module):
fused_attn: torch.jit.Final[bool]
""" Cross-Covariance Attention (XCA)
Operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax
normalized) Cross-covariance matrix (Q^T \\cdot K \\in d_h \\times d_h)
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
self.fused_attn = use_fused_attn(experimental=True)
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
# Result of next line is (qkv, B, num (H)eads, (C')hannels per head, N)
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.fused_attn:
q = torch.nn.functional.normalize(q, dim=-1) * self.temperature
k = torch.nn.functional.normalize(k, dim=-1)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, scale=1.0)
else:
# Paper section 3.2 l2-Normalization and temperature scaling
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.permute(0, 3, 1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@torch.jit.ignore
def no_weight_decay(self):
return {'temperature'}
class XCABlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
eta=1.,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = XCA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm3 = norm_layer(dim)
self.local_mp = LPI(in_features=dim, act_layer=act_layer)
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop)
self.gamma1 = nn.Parameter(eta * torch.ones(dim))
self.gamma3 = nn.Parameter(eta * torch.ones(dim))
self.gamma2 = nn.Parameter(eta * torch.ones(dim))
def forward(self, x, H: int, W: int):
x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x)))
# NOTE official code has 3 then 2, so keeping it the same to be consistent with loaded weights
# See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721
x = x + self.drop_path(self.gamma3 * self.local_mp(self.norm3(x), H, W))
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x)))
return x
class Xcit(nn.Module):
"""
Based on timm and DeiT code bases
https://github.com/rwightman/pytorch-image-models/tree/master/timm
https://github.com/facebookresearch/deit/
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool='token',
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.,
pos_drop_rate=0.,
proj_drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
act_layer=None,
norm_layer=None,
cls_attn_layers=2,
use_pos_embed=True,
eta=1.,
tokens_norm=False,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
drop_rate (float): dropout rate after positional embedding, and in XCA/CA projection + MLP
pos_drop_rate: position embedding dropout rate
proj_drop_rate (float): projection dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate (constant across all layers)
norm_layer: (nn.Module): normalization layer
cls_attn_layers: (int) Depth of Class attention layers
use_pos_embed: (bool) whether to use positional encoding
eta: (float) layerscale initialization value
tokens_norm: (bool) Whether to normalize all tokens or just the cls_token in the CA
Notes:
- Although `layer_norm` is user specifiable, there are hard-coded `BatchNorm2d`s in the local patch
interaction (class LPI) and the patch embedding (class ConvPatchEmbed)
"""
super().__init__()
assert global_pool in ('', 'avg', 'token')
img_size = to_2tuple(img_size)
assert (img_size[0] % patch_size == 0) and (img_size[0] % patch_size == 0), \
'`patch_size` should divide image dimensions evenly'
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.num_classes = num_classes
self.num_features = self.head_hidden_size = self.embed_dim = embed_dim
self.global_pool = global_pool
self.grad_checkpointing = False
self.patch_embed = ConvPatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
act_layer=act_layer,
)
r = patch_size
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_pos_embed:
self.pos_embed = PositionalEncodingFourier(dim=embed_dim)
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=pos_drop_rate)
self.blocks = nn.ModuleList([
XCABlock(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=drop_path_rate,
act_layer=act_layer,
norm_layer=norm_layer,
eta=eta,
)
for _ in range(depth)])
self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)]
self.cls_attn_blocks = nn.ModuleList([
ClassAttentionBlock(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=drop_rate,
attn_drop=attn_drop_rate,
act_layer=act_layer,
norm_layer=norm_layer,
eta=eta,
tokens_norm=tokens_norm,
)
for _ in range(cls_attn_layers)])
# Classifier head
self.norm = norm_layer(embed_dim)
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# Init weights
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
blocks=r'^blocks\.(\d+)',
cls_attn_blocks=[(r'^cls_attn_blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'token')
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
reshape = output_fmt == 'NCHW'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
# forward pass
B, _, height, width = x.shape
x, (Hp, Wp) = self.patch_embed(x)
if self.pos_embed is not None:
# `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C)
pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1)
x = x + pos_encoding
x = self.pos_drop(x)
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x, Hp, Wp)
if i in take_indices:
# normalize intermediates with final norm layer if enabled
intermediates.append(self.norm(x) if norm else x)
# process intermediates
if reshape:
# reshape to BCHW output format
intermediates = [y.reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
if intermediates_only:
return intermediates
# NOTE not supporting return of class tokens
x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)
for blk in self.cls_attn_blocks:
x = blk(x)
x = self.norm(x)
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_norm:
self.norm = nn.Identity()
if prune_head:
self.cls_attn_blocks = nn.ModuleList() # prune token blocks with head
self.reset_classifier(0, '')
return take_indices
def forward_features(self, x):
B = x.shape[0]
# x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches)
x, (Hp, Wp) = self.patch_embed(x)
if self.pos_embed is not None:
# `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C)
pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1)
x = x + pos_encoding
x = self.pos_drop(x)
for blk in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x, Hp, Wp)
else:
x = blk(x, Hp, Wp)
x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)
for blk in self.cls_attn_blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x)
else:
x = blk(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model):
if 'model' in state_dict:
state_dict = state_dict['model']
# For consistency with timm's transformer models while being compatible with official weights source we rename
# pos_embeder to pos_embed. Also account for use_pos_embed == False
use_pos_embed = getattr(model, 'pos_embed', None) is not None
pos_embed_keys = [k for k in state_dict if k.startswith('pos_embed')]
for k in pos_embed_keys:
if use_pos_embed:
state_dict[k.replace('pos_embeder.', 'pos_embed.')] = state_dict.pop(k)
else:
del state_dict[k]
# timm's implementation of class attention in CaiT is slightly more efficient as it does not compute query vectors
# for all tokens, just the class token. To use official weights source we must split qkv into q, k, v
if 'cls_attn_blocks.0.attn.qkv.weight' in state_dict and 'cls_attn_blocks.0.attn.q.weight' in model.state_dict():
num_ca_blocks = len(model.cls_attn_blocks)
for i in range(num_ca_blocks):
qkv_weight = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.weight')
qkv_weight = qkv_weight.reshape(3, -1, qkv_weight.shape[-1])
for j, subscript in enumerate('qkv'):
state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.weight'] = qkv_weight[j]
qkv_bias = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.bias', None)
if qkv_bias is not None:
qkv_bias = qkv_bias.reshape(3, -1)
for j, subscript in enumerate('qkv'):
state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.bias'] = qkv_bias[j]
return state_dict
def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs):
out_indices = kwargs.pop('out_indices', 3)
model = build_model_with_cfg(
Xcit,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj.0.0', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
# Patch size 16
'xcit_nano_12_p16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224.pth'),
'xcit_nano_12_p16_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224_dist.pth'),
'xcit_nano_12_p16_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_384_dist.pth', input_size=(3, 384, 384)),
'xcit_tiny_12_p16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224.pth'),
'xcit_tiny_12_p16_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224_dist.pth'),
'xcit_tiny_12_p16_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_384_dist.pth', input_size=(3, 384, 384)),
'xcit_tiny_24_p16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224.pth'),
'xcit_tiny_24_p16_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224_dist.pth'),
'xcit_tiny_24_p16_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_384_dist.pth', input_size=(3, 384, 384)),
'xcit_small_12_p16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth'),
'xcit_small_12_p16_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224_dist.pth'),
'xcit_small_12_p16_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_384_dist.pth', input_size=(3, 384, 384)),
'xcit_small_24_p16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224.pth'),
'xcit_small_24_p16_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224_dist.pth'),
'xcit_small_24_p16_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_384_dist.pth', input_size=(3, 384, 384)),
'xcit_medium_24_p16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224.pth'),
'xcit_medium_24_p16_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224_dist.pth'),
'xcit_medium_24_p16_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_384_dist.pth', input_size=(3, 384, 384)),
'xcit_large_24_p16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224.pth'),
'xcit_large_24_p16_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224_dist.pth'),
'xcit_large_24_p16_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_384_dist.pth', input_size=(3, 384, 384)),
# Patch size 8
'xcit_nano_12_p8_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224.pth'),
'xcit_nano_12_p8_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224_dist.pth'),
'xcit_nano_12_p8_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_384_dist.pth', input_size=(3, 384, 384)),
'xcit_tiny_12_p8_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224.pth'),
'xcit_tiny_12_p8_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224_dist.pth'),
'xcit_tiny_12_p8_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_384_dist.pth', input_size=(3, 384, 384)),
'xcit_tiny_24_p8_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224.pth'),
'xcit_tiny_24_p8_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224_dist.pth'),
'xcit_tiny_24_p8_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_384_dist.pth', input_size=(3, 384, 384)),
'xcit_small_12_p8_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224.pth'),
'xcit_small_12_p8_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224_dist.pth'),
'xcit_small_12_p8_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_384_dist.pth', input_size=(3, 384, 384)),
'xcit_small_24_p8_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224.pth'),
'xcit_small_24_p8_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224_dist.pth'),
'xcit_small_24_p8_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_384_dist.pth', input_size=(3, 384, 384)),
'xcit_medium_24_p8_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224.pth'),
'xcit_medium_24_p8_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224_dist.pth'),
'xcit_medium_24_p8_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_384_dist.pth', input_size=(3, 384, 384)),
'xcit_large_24_p8_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224.pth'),
'xcit_large_24_p8_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224_dist.pth'),
'xcit_large_24_p8_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_384_dist.pth', input_size=(3, 384, 384)),
})
@register_model
def xcit_nano_12_p16_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False)
model = _create_xcit('xcit_nano_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_nano_12_p16_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, img_size=384)
model = _create_xcit('xcit_nano_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_12_p16_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_tiny_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_12_p16_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_tiny_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_12_p16_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_small_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_12_p16_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_small_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_24_p16_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_tiny_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_24_p16_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_tiny_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_24_p16_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_small_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_24_p16_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_small_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_medium_24_p16_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_medium_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_medium_24_p16_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_medium_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_large_24_p16_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_large_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_large_24_p16_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_large_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
# Patch size 8x8 models
@register_model
def xcit_nano_12_p8_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False)
model = _create_xcit('xcit_nano_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_nano_12_p8_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False)
model = _create_xcit('xcit_nano_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_12_p8_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_tiny_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_12_p8_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_tiny_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_12_p8_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_small_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_12_p8_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True)
model = _create_xcit('xcit_small_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_24_p8_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_tiny_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_tiny_24_p8_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_tiny_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_24_p8_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_small_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_small_24_p8_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_small_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_medium_24_p8_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_medium_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_medium_24_p8_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_medium_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_large_24_p8_224(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_large_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def xcit_large_24_p8_384(pretrained=False, **kwargs) -> Xcit:
model_args = dict(
patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True)
model = _create_xcit('xcit_large_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
register_model_deprecations(__name__, {
# Patch size 16
'xcit_nano_12_p16_224_dist': 'xcit_nano_12_p16_224.fb_dist_in1k',
'xcit_nano_12_p16_384_dist': 'xcit_nano_12_p16_384.fb_dist_in1k',
'xcit_tiny_12_p16_224_dist': 'xcit_tiny_12_p16_224.fb_dist_in1k',
'xcit_tiny_12_p16_384_dist': 'xcit_tiny_12_p16_384.fb_dist_in1k',
'xcit_tiny_24_p16_224_dist': 'xcit_tiny_24_p16_224.fb_dist_in1k',
'xcit_tiny_24_p16_384_dist': 'xcit_tiny_24_p16_384.fb_dist_in1k',
'xcit_small_12_p16_224_dist': 'xcit_small_12_p16_224.fb_dist_in1k',
'xcit_small_12_p16_384_dist': 'xcit_small_12_p16_384.fb_dist_in1k',
'xcit_small_24_p16_224_dist': 'xcit_small_24_p16_224.fb_dist_in1k',
'xcit_small_24_p16_384_dist': 'xcit_small_24_p16_384.fb_dist_in1k',
'xcit_medium_24_p16_224_dist': 'xcit_medium_24_p16_224.fb_dist_in1k',
'xcit_medium_24_p16_384_dist': 'xcit_medium_24_p16_384.fb_dist_in1k',
'xcit_large_24_p16_224_dist': 'xcit_large_24_p16_224.fb_dist_in1k',
'xcit_large_24_p16_384_dist': 'xcit_large_24_p16_384.fb_dist_in1k',
# Patch size 8
'xcit_nano_12_p8_224_dist': 'xcit_nano_12_p8_224.fb_dist_in1k',
'xcit_nano_12_p8_384_dist': 'xcit_nano_12_p8_384.fb_dist_in1k',
'xcit_tiny_12_p8_224_dist': 'xcit_tiny_12_p8_224.fb_dist_in1k',
'xcit_tiny_12_p8_384_dist': 'xcit_tiny_12_p8_384.fb_dist_in1k',
'xcit_tiny_24_p8_224_dist': 'xcit_tiny_24_p8_224.fb_dist_in1k',
'xcit_tiny_24_p8_384_dist': 'xcit_tiny_24_p8_384.fb_dist_in1k',
'xcit_small_12_p8_224_dist': 'xcit_small_12_p8_224.fb_dist_in1k',
'xcit_small_12_p8_384_dist': 'xcit_small_12_p8_384.fb_dist_in1k',
'xcit_small_24_p8_224_dist': 'xcit_small_24_p8_224.fb_dist_in1k',
'xcit_small_24_p8_384_dist': 'xcit_small_24_p8_384.fb_dist_in1k',
'xcit_medium_24_p8_224_dist': 'xcit_medium_24_p8_224.fb_dist_in1k',
'xcit_medium_24_p8_384_dist': 'xcit_medium_24_p8_384.fb_dist_in1k',
'xcit_large_24_p8_224_dist': 'xcit_large_24_p8_224.fb_dist_in1k',
'xcit_large_24_p8_384_dist': 'xcit_large_24_p8_384.fb_dist_in1k',
})