mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
312 lines
12 KiB
Python
312 lines
12 KiB
Python
import random
|
||
import math
|
||
from typing import Optional, Union, Tuple
|
||
|
||
import torch
|
||
|
||
|
||
class PatchRandomErasing:
|
||
"""
|
||
Random erasing for patchified images in NaFlex format.
|
||
|
||
Supports three modes:
|
||
1. 'patch': Simple mode that erases randomly selected valid patches
|
||
2. 'region': Erases rectangular regions at patch granularity
|
||
|
||
Args:
|
||
erase_prob: Probability that the Random Erasing operation will be performed.
|
||
patch_drop_prob: Patch dropout probability. Remove random patches instead of erasing.
|
||
min_area: Minimum percentage of valid patches/area to erase.
|
||
max_area: Maximum percentage of valid patches/area to erase.
|
||
min_aspect: Minimum aspect ratio of erased area (only used in 'region' mode).
|
||
max_aspect: Maximum aspect ratio of erased area (only used in 'region' mode).
|
||
mode: Patch content mode, one of 'const', 'rand', or 'pixel'
|
||
'const' - erase patch is constant color of 0 for all channels
|
||
'rand' - erase patch has same random (normal) value across all elements
|
||
'pixel' - erase patch has per-element random (normal) values
|
||
spatial_mode: Erasing strategy, one of 'patch', 'region', or 'subregion'
|
||
patch_size: Size of each patch (required for 'subregion' mode)
|
||
num_splits: Number of splits to apply erasing to (0 for all)
|
||
device: Computation device
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
erase_prob: float = 0.5,
|
||
patch_drop_prob: float = 0.0,
|
||
min_count: int = 1,
|
||
max_count: Optional[int] = None,
|
||
min_area: float = 0.02,
|
||
max_area: float = 1 / 3,
|
||
min_aspect: float = 0.3,
|
||
max_aspect: Optional[float] = None,
|
||
mode: str = 'const',
|
||
value: float = 0.,
|
||
spatial_mode: str = 'region',
|
||
num_splits: int = 0,
|
||
device: Union[str, torch.device] = 'cuda',
|
||
):
|
||
self.erase_prob = erase_prob
|
||
self.patch_drop_prob = patch_drop_prob
|
||
self.min_count = min_count
|
||
self.max_count = max_count or min_count
|
||
self.min_area = min_area
|
||
self.max_area = max_area
|
||
|
||
# Aspect ratio params (for region mode)
|
||
max_aspect = max_aspect or 1 / min_aspect
|
||
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
|
||
|
||
# Number of splits
|
||
self.num_splits = num_splits
|
||
self.device = device
|
||
|
||
# Strategy mode
|
||
self.spatial_mode = spatial_mode
|
||
assert self.spatial_mode in ('patch', 'region')
|
||
|
||
# Value generation mode flags
|
||
self.erase_mode = mode.lower()
|
||
assert self.erase_mode in ('rand', 'pixel', 'const')
|
||
self.const_value = value
|
||
self.unique_noise_per_patch = True
|
||
|
||
def _get_values(
|
||
self,
|
||
shape: Union[Tuple[int,...], torch.Size],
|
||
value: Optional[torch.Tensor] = None,
|
||
dtype: torch.dtype = torch.float32,
|
||
device: Optional[Union[str, torch.device]] = None
|
||
):
|
||
"""Generate values for erased patches based on the specified mode.
|
||
Args:
|
||
shape: Shape of patches to erase.
|
||
value: Value to use in const (or rand) mode.
|
||
dtype: Data type to use.
|
||
device: Device to use.
|
||
"""
|
||
device = device or self.device
|
||
if self.erase_mode == 'pixel':
|
||
# only mode with erase shape that includes pixels
|
||
return torch.empty(shape, dtype=dtype, device=device).normal_()
|
||
else:
|
||
shape = (1, 1, shape[-1]) if len(shape) == 3 else (1, shape[-1])
|
||
if self.erase_mode == 'const' or value is not None:
|
||
erase_value = value or self.const_value
|
||
if isinstance(erase_value, (int, float)):
|
||
values = torch.full(shape, erase_value, dtype=dtype, device=device)
|
||
else:
|
||
erase_value = torch.tensor(erase_value, dtype=dtype, device=device)
|
||
values = torch.expand_copy(erase_value, shape)
|
||
else:
|
||
values = torch.empty(shape, dtype=dtype, device=device).normal_()
|
||
return values
|
||
|
||
def _drop_patches(
|
||
self,
|
||
patches: torch.Tensor,
|
||
patch_coord: torch.Tensor,
|
||
patch_valid: torch.Tensor,
|
||
):
|
||
""" Patch Dropout
|
||
|
||
Fully drops patches from datastream. Only mode that saves compute BUT requires support
|
||
for non-contiguous patches and associated patch coordinate and valid handling.
|
||
"""
|
||
# FIXME WIP, not completed. Downstream support in model needed for non-contiguous valid patches
|
||
if random.random() > self.erase_prob:
|
||
return
|
||
|
||
# Get indices of valid patches
|
||
valid_indices = torch.nonzero(patch_valid, as_tuple=True)[0].tolist()
|
||
|
||
# Skip if no valid patches
|
||
if not valid_indices:
|
||
return patches, patch_coord, patch_valid
|
||
|
||
num_valid = len(valid_indices)
|
||
if self.patch_drop_prob:
|
||
# patch dropout mode, completely remove dropped patches (FIXME needs downstream support in model)
|
||
num_keep = max(1, int(num_valid * (1. - self.patch_drop_prob)))
|
||
keep_indices = torch.argsort(torch.randn(1, num_valid, device=self.device), dim=-1)[:, :num_keep]
|
||
# maintain patch order, possibly useful for debug / visualization
|
||
keep_indices = keep_indices.sort(dim=-1)[0]
|
||
patches = patches.gather(1, keep_indices.unsqueeze(-1).expand((-1, -1) + patches.shape[2:]))
|
||
|
||
return patches, patch_coord, patch_valid
|
||
|
||
def _erase_patches(
|
||
self,
|
||
patches: torch.Tensor,
|
||
patch_coord: torch.Tensor,
|
||
patch_valid: torch.Tensor,
|
||
patch_shape: torch.Size,
|
||
dtype: torch.dtype = torch.float32,
|
||
):
|
||
"""Apply erasing by selecting individual patches randomly.
|
||
|
||
The simplest mode, aligned on patch boundaries. Behaves similarly to speckle or 'sprinkles'
|
||
noise augmentation at patch size.
|
||
"""
|
||
if random.random() > self.erase_prob:
|
||
return
|
||
|
||
# Get indices of valid patches
|
||
valid_indices = torch.nonzero(patch_valid, as_tuple=True)[0]
|
||
num_valid = len(valid_indices)
|
||
if num_valid == 0:
|
||
return
|
||
|
||
count = random.randint(self.min_count, self.max_count)
|
||
# Determine how many valid patches to erase from RE min/max count and area args
|
||
max_erase = min(num_valid, max(1, int(num_valid * count * self.max_area)))
|
||
min_erase = max(1, int(num_valid * count * self.min_area))
|
||
num_erase = random.randint(min_erase, max_erase)
|
||
|
||
# Randomly select valid patches to erase
|
||
erase_idx = valid_indices[torch.randperm(num_valid, device=patches.device)[:num_erase]]
|
||
|
||
if self.unique_noise_per_patch and self.erase_mode == 'pixel':
|
||
# generate unique noise for the whole selection of patches
|
||
fill_shape = (num_erase,) + patch_shape
|
||
else:
|
||
fill_shape = patch_shape
|
||
|
||
patches[erase_idx] = self._get_values(fill_shape, dtype=dtype)
|
||
|
||
def _erase_region(
|
||
self,
|
||
patches: torch.Tensor,
|
||
patch_coord: torch.Tensor,
|
||
patch_valid: torch.Tensor,
|
||
patch_shape: torch.Size,
|
||
dtype: torch.dtype = torch.float32,
|
||
):
|
||
"""Apply erasing by selecting rectangular regions of patches randomly
|
||
|
||
Closer to the original RandomErasing implementation. Erases
|
||
spatially contiguous rectangular regions of patches (aligned with patches).
|
||
"""
|
||
if random.random() > self.erase_prob:
|
||
return
|
||
|
||
# Determine grid dimensions from coordinates
|
||
valid_coord = patch_coord[patch_valid]
|
||
if len(valid_coord) == 0:
|
||
return # No valid patches
|
||
max_y = valid_coord[:, 0].max().item() + 1
|
||
max_x = valid_coord[:, 1].max().item() + 1
|
||
grid_h, grid_w = max_y, max_x
|
||
total_area = grid_h * grid_w
|
||
ys, xs = patch_coord[:, 0], patch_coord[:, 1]
|
||
|
||
count = random.randint(self.min_count, self.max_count)
|
||
for _ in range(count):
|
||
# Try to select a valid region to erase (multiple attempts)
|
||
for attempt in range(10):
|
||
# Sample random area and aspect ratio
|
||
target_area = random.uniform(self.min_area, self.max_area) * total_area
|
||
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
|
||
|
||
# Calculate region height and width
|
||
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
||
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
||
|
||
if h > grid_h or w > grid_w:
|
||
continue # try again
|
||
|
||
# Calculate region patch bounds
|
||
top = random.randint(0, grid_h - h)
|
||
left = random.randint(0, grid_w - w)
|
||
bottom, right = top + h, left + w
|
||
|
||
# Region test
|
||
region_mask = (
|
||
(ys >= top) & (ys < bottom) &
|
||
(xs >= left) & (xs < right) &
|
||
patch_valid
|
||
)
|
||
num_selected = int(region_mask.sum().item())
|
||
if not num_selected:
|
||
continue # no patch actually falls inside – try again
|
||
|
||
if self.unique_noise_per_patch and self.erase_mode == 'pixel':
|
||
# generate unique noise for the whole region
|
||
fill_shape = (num_selected,) + patch_shape
|
||
else:
|
||
fill_shape = patch_shape
|
||
|
||
patches[region_mask] = self._get_values(fill_shape, dtype=dtype)
|
||
# Successfully applied erasing, exit the loop
|
||
break
|
||
|
||
def __call__(
|
||
self,
|
||
patches: torch.Tensor,
|
||
patch_coord: torch.Tensor,
|
||
patch_valid: Optional[torch.Tensor] = None,
|
||
):
|
||
"""
|
||
Apply random patch erasing.
|
||
|
||
Args:
|
||
patches: Tensor of shape [B, N, P*P, C]
|
||
patch_coord: Tensor of shape [B, N, 2] with (y, x) coordinates
|
||
patch_valid: Boolean tensor of shape [B, N] indicating which patches are valid
|
||
If None, all patches are considered valid
|
||
|
||
Returns:
|
||
Erased patches tensor of same shape
|
||
"""
|
||
if patches.ndim == 4:
|
||
batch_size, num_patches, patch_dim, channels = patches.shape
|
||
elif patches.ndim == 5:
|
||
batch_size, num_patches, patch_h, patch_w, channels = patches.shape
|
||
else:
|
||
assert False
|
||
patch_shape = patches.shape[2:]
|
||
# patch_shape ==> shape of patches to fill (h, w, c) or (h * w, c)
|
||
|
||
# Create default valid mask if not provided
|
||
if patch_valid is None:
|
||
patch_valid = torch.ones((batch_size, num_patches), dtype=torch.bool, device=patches.device)
|
||
|
||
# Skip the first part of the batch if num_splits is set
|
||
batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0
|
||
|
||
# Apply erasing to each batch element
|
||
for i in range(batch_start, batch_size):
|
||
if self.patch_drop_prob:
|
||
assert False, "WIP, not completed"
|
||
self._drop_patches(
|
||
patches[i],
|
||
patch_coord[i],
|
||
patch_valid[i],
|
||
)
|
||
elif self.spatial_mode == 'patch':
|
||
# FIXME we could vectorize patch mode across batch, worth the effort?
|
||
self._erase_patches(
|
||
patches[i],
|
||
patch_coord[i],
|
||
patch_valid[i],
|
||
patch_shape,
|
||
patches.dtype
|
||
)
|
||
elif self.spatial_mode == 'region':
|
||
self._erase_region(
|
||
patches[i],
|
||
patch_coord[i],
|
||
patch_valid[i],
|
||
patch_shape,
|
||
patches.dtype
|
||
)
|
||
else:
|
||
assert False
|
||
|
||
return patches
|
||
|
||
def __repr__(self):
|
||
fs = self.__class__.__name__ + f'(p={self.erase_prob}, mode={self.erase_mode}'
|
||
fs += f', spatial={self.spatial_mode}, area=({self.min_area}, {self.max_area}))'
|
||
fs += f', count=({self.min_count}, {self.max_count}))'
|
||
return fs |