Ross Wightman eb7653614f Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
2020-06-01 17:16:52 -07:00

32 lines
1.3 KiB
Python

""" Conv2d + BN + Act
Hacked together by Ross Wightman
"""
from torch import nn as nn
from .create_conv2d import create_conv2d
from .create_norm_act import convert_norm_act_type
class ConvBnAct(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1,
norm_layer=nn.BatchNorm2d, norm_kwargs=None, act_layer=nn.ReLU, apply_act=True,
drop_block=None, aa_layer=None):
super(ConvBnAct, self).__init__()
use_aa = aa_layer is not None
self.conv = create_conv2d(
in_channels, out_channels, kernel_size, stride=1 if use_aa else stride,
padding=padding, dilation=dilation, groups=groups, bias=False)
# NOTE for backwards compatibility with models that use separate norm and act layer definitions
norm_act_layer, norm_act_args = convert_norm_act_type(norm_layer, act_layer, norm_kwargs)
self.bn = norm_act_layer(out_channels, apply_act=apply_act, drop_block=drop_block, **norm_act_args)
self.aa = aa_layer(channels=out_channels) if stride == 2 and use_aa else None
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.aa is not None:
x = self.aa(x)
return x