Ross Wightman eb7653614f Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
2020-06-01 17:16:52 -07:00

38 lines
1.2 KiB
Python

""" Select AttentionFactory Method
Hacked together by Ross Wightman
"""
import torch
from .se import SEModule, EffectiveSEModule
from .eca import EcaModule, CecaModule
from .cbam import CbamModule, LightCbamModule
def create_attn(attn_type, channels, **kwargs):
module_cls = None
if attn_type is not None:
if isinstance(attn_type, str):
attn_type = attn_type.lower()
if attn_type == 'se':
module_cls = SEModule
elif attn_type == 'ese':
module_cls = EffectiveSEModule
elif attn_type == 'eca':
module_cls = EcaModule
elif attn_type == 'ceca':
module_cls = CecaModule
elif attn_type == 'cbam':
module_cls = CbamModule
elif attn_type == 'lcbam':
module_cls = LightCbamModule
else:
assert False, "Invalid attn module (%s)" % attn_type
elif isinstance(attn_type, bool):
if attn_type:
module_cls = SEModule
else:
module_cls = attn_type
if module_cls is not None:
return module_cls(channels, **kwargs)
return None