141 lines
5.4 KiB
Python
141 lines
5.4 KiB
Python
""" AdamW Optimizer
|
|
Impl copied from PyTorch master
|
|
|
|
NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference
|
|
"""
|
|
import math
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
from torch.optim.optimizer import Optimizer
|
|
|
|
from ._types import ParamsT
|
|
|
|
|
|
class AdamWLegacy(Optimizer):
|
|
r"""Implements AdamW algorithm.
|
|
|
|
NOTE: This impl has been deprecated in favour of torch.optim.NAdam and remains as a reference
|
|
|
|
References:
|
|
- Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980
|
|
- Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101
|
|
- On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ
|
|
|
|
Args:
|
|
params: iterable of parameters to optimize or dicts defining parameter groups
|
|
lr: learning rate
|
|
betas: coefficients used for computing running averages of gradient and its square
|
|
eps: term added to the denominator to improve numerical stability
|
|
weight_decay: weight decay coefficient
|
|
amsgrad: whether to use the AMSGrad variant of this algorithm
|
|
from the paper `On the Convergence of Adam and Beyond`
|
|
caution: apply caution when using AdamW
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
params: ParamsT,
|
|
lr: float = 1e-3,
|
|
betas: Tuple[float, float] = (0.9, 0.999),
|
|
eps: float = 1e-8,
|
|
weight_decay: float = 1e-2,
|
|
amsgrad: bool = False,
|
|
caution: bool = False,
|
|
):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
|
defaults = dict(
|
|
lr=lr,
|
|
betas=betas,
|
|
eps=eps,
|
|
weight_decay=weight_decay,
|
|
amsgrad=amsgrad,
|
|
caution=caution,
|
|
)
|
|
super(AdamWLegacy, self).__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super(AdamWLegacy, self).__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('amsgrad', False)
|
|
group.setdefault('caution', False)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
|
|
# Perform stepweight decay
|
|
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
|
|
|
# Perform optimization step
|
|
grad = p.grad
|
|
if grad.is_sparse:
|
|
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
|
|
amsgrad = group['amsgrad']
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = torch.zeros_like(p)
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
|
if amsgrad:
|
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
|
state['max_exp_avg_sq'] = torch.zeros_like(p)
|
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
|
if amsgrad:
|
|
max_exp_avg_sq = state['max_exp_avg_sq']
|
|
beta1, beta2 = group['betas']
|
|
|
|
state['step'] += 1
|
|
bias_correction1 = 1 - beta1 ** state['step']
|
|
bias_correction2 = 1 - beta2 ** state['step']
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
if amsgrad:
|
|
# Maintains the maximum of all 2nd moment running avg. till now
|
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
|
|
# Use the max. for normalizing running avg. of gradient
|
|
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
|
else:
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
|
|
|
step_size = group['lr'] / bias_correction1
|
|
|
|
if group['caution']:
|
|
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
|
|
mask = (exp_avg * grad > 0).to(grad.dtype)
|
|
mask.div_(mask.mean().clamp_(min=1e-3))
|
|
exp_avg = exp_avg * mask
|
|
|
|
p.addcdiv_(exp_avg, denom, value=-step_size)
|
|
|
|
return loss
|