Merge pull request #9 from burnmyletters/master
add senet from pertained_models and more resnetspull/19/head
commit
0df326abcb
|
@ -10,6 +10,37 @@ import torch
|
|||
from torch import nn
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
|
@ -107,3 +138,4 @@ class ResNet(nn.Module):
|
|||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
|
||||
|
|
|
@ -0,0 +1,359 @@
|
|||
"""
|
||||
ResNet code gently borrowed from
|
||||
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
|
||||
"""
|
||||
from __future__ import print_function, division, absolute_import
|
||||
from collections import OrderedDict
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils import model_zoo
|
||||
|
||||
__all__ = ['SENet', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152',
|
||||
'se_resnext50_32x4d', 'se_resnext101_32x4d']
|
||||
|
||||
pretrained_settings = {
|
||||
'senet154': {
|
||||
'imagenet': {
|
||||
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth',
|
||||
'input_space': 'RGB',
|
||||
'input_size': [3, 224, 224],
|
||||
'input_range': [0, 1],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'num_classes': 1000
|
||||
}
|
||||
},
|
||||
'se_resnet50': {
|
||||
'imagenet': {
|
||||
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth',
|
||||
'input_space': 'RGB',
|
||||
'input_size': [3, 224, 224],
|
||||
'input_range': [0, 1],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'num_classes': 1000
|
||||
}
|
||||
},
|
||||
'se_resnet101': {
|
||||
'imagenet': {
|
||||
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth',
|
||||
'input_space': 'RGB',
|
||||
'input_size': [3, 224, 224],
|
||||
'input_range': [0, 1],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'num_classes': 1000
|
||||
}
|
||||
},
|
||||
'se_resnet152': {
|
||||
'imagenet': {
|
||||
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth',
|
||||
'input_space': 'RGB',
|
||||
'input_size': [3, 224, 224],
|
||||
'input_range': [0, 1],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'num_classes': 1000
|
||||
}
|
||||
},
|
||||
'se_resnext50_32x4d': {
|
||||
'imagenet': {
|
||||
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth',
|
||||
'input_space': 'RGB',
|
||||
'input_size': [3, 224, 224],
|
||||
'input_range': [0, 1],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'num_classes': 1000
|
||||
}
|
||||
},
|
||||
'se_resnext101_32x4d': {
|
||||
'imagenet': {
|
||||
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth',
|
||||
'input_space': 'RGB',
|
||||
'input_size': [3, 224, 224],
|
||||
'input_range': [0, 1],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'num_classes': 1000
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class SEModule(nn.Module):
|
||||
|
||||
def __init__(self, channels, reduction):
|
||||
super(SEModule, self).__init__()
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,
|
||||
padding=0)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,
|
||||
padding=0)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
module_input = x
|
||||
x = self.avg_pool(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.sigmoid(x)
|
||||
return module_input * x
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
"""
|
||||
Base class for bottlenecks that implements `forward()` method.
|
||||
"""
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out = self.se_module(out) + residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class SEBottleneck(Bottleneck):
|
||||
"""
|
||||
Bottleneck for SENet154.
|
||||
"""
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, groups, reduction, stride=1,
|
||||
downsample=None):
|
||||
super(SEBottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes * 2)
|
||||
self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3,
|
||||
stride=stride, padding=1, groups=groups,
|
||||
bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes * 4)
|
||||
self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1,
|
||||
bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.se_module = SEModule(planes * 4, reduction=reduction)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
|
||||
class SEResNetBottleneck(Bottleneck):
|
||||
"""
|
||||
ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe
|
||||
implementation and uses `stride=stride` in `conv1` and not in `conv2`
|
||||
(the latter is used in the torchvision implementation of ResNet).
|
||||
"""
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, groups, reduction, stride=1,
|
||||
downsample=None):
|
||||
super(SEResNetBottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False,
|
||||
stride=stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1,
|
||||
groups=groups, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.se_module = SEModule(planes * 4, reduction=reduction)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
|
||||
class SEResNeXtBottleneck(Bottleneck):
|
||||
"""
|
||||
ResNeXt bottleneck type C with a Squeeze-and-Excitation module.
|
||||
"""
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, groups, reduction, stride=1,
|
||||
downsample=None, base_width=4):
|
||||
super(SEResNeXtBottleneck, self).__init__()
|
||||
width = math.floor(planes * (base_width / 64)) * groups
|
||||
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False,
|
||||
stride=1)
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
|
||||
padding=1, groups=groups, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.se_module = SEModule(planes * 4, reduction=reduction)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
|
||||
class SENet(nn.Module):
|
||||
|
||||
def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
|
||||
inplanes=128, input_3x3=True, downsample_kernel_size=3,
|
||||
downsample_padding=1, last_stride=2):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
block (nn.Module): Bottleneck class.
|
||||
- For SENet154: SEBottleneck
|
||||
- For SE-ResNet models: SEResNetBottleneck
|
||||
- For SE-ResNeXt models: SEResNeXtBottleneck
|
||||
layers (list of ints): Number of residual blocks for 4 layers of the
|
||||
network (layer1...layer4).
|
||||
groups (int): Number of groups for the 3x3 convolution in each
|
||||
bottleneck block.
|
||||
- For SENet154: 64
|
||||
- For SE-ResNet models: 1
|
||||
- For SE-ResNeXt models: 32
|
||||
reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
|
||||
- For all models: 16
|
||||
dropout_p (float or None): Drop probability for the Dropout layer.
|
||||
If `None` the Dropout layer is not used.
|
||||
- For SENet154: 0.2
|
||||
- For SE-ResNet models: None
|
||||
- For SE-ResNeXt models: None
|
||||
inplanes (int): Number of input channels for layer1.
|
||||
- For SENet154: 128
|
||||
- For SE-ResNet models: 64
|
||||
- For SE-ResNeXt models: 64
|
||||
input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
|
||||
a single 7x7 convolution in layer0.
|
||||
- For SENet154: True
|
||||
- For SE-ResNet models: False
|
||||
- For SE-ResNeXt models: False
|
||||
downsample_kernel_size (int): Kernel size for downsampling convolutions
|
||||
in layer2, layer3 and layer4.
|
||||
- For SENet154: 3
|
||||
- For SE-ResNet models: 1
|
||||
- For SE-ResNeXt models: 1
|
||||
downsample_padding (int): Padding for downsampling convolutions in
|
||||
layer2, layer3 and layer4.
|
||||
- For SENet154: 1
|
||||
- For SE-ResNet models: 0
|
||||
- For SE-ResNeXt models: 0
|
||||
num_classes (int): Number of outputs in `last_linear` layer.
|
||||
- For all models: 1000
|
||||
"""
|
||||
super(SENet, self).__init__()
|
||||
self.inplanes = inplanes
|
||||
if input_3x3:
|
||||
layer0_modules = [
|
||||
('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
|
||||
bias=False)),
|
||||
('bn1', nn.BatchNorm2d(64)),
|
||||
('relu1', nn.ReLU(inplace=True)),
|
||||
('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
|
||||
bias=False)),
|
||||
('bn2', nn.BatchNorm2d(64)),
|
||||
('relu2', nn.ReLU(inplace=True)),
|
||||
('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
|
||||
bias=False)),
|
||||
('bn3', nn.BatchNorm2d(inplanes)),
|
||||
('relu3', nn.ReLU(inplace=True)),
|
||||
]
|
||||
else:
|
||||
layer0_modules = [
|
||||
('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
|
||||
padding=3, bias=False)),
|
||||
('bn1', nn.BatchNorm2d(inplanes)),
|
||||
('relu1', nn.ReLU(inplace=True)),
|
||||
]
|
||||
# To preserve compatibility with Caffe weights `ceil_mode=True`
|
||||
# is used instead of `padding=1`.
|
||||
layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
|
||||
ceil_mode=True)))
|
||||
self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
|
||||
self.layer1 = self._make_layer(
|
||||
block,
|
||||
planes=64,
|
||||
blocks=layers[0],
|
||||
groups=groups,
|
||||
reduction=reduction,
|
||||
downsample_kernel_size=1,
|
||||
downsample_padding=0
|
||||
)
|
||||
self.layer2 = self._make_layer(
|
||||
block,
|
||||
planes=128,
|
||||
blocks=layers[1],
|
||||
stride=2,
|
||||
groups=groups,
|
||||
reduction=reduction,
|
||||
downsample_kernel_size=downsample_kernel_size,
|
||||
downsample_padding=downsample_padding
|
||||
)
|
||||
self.layer3 = self._make_layer(
|
||||
block,
|
||||
planes=256,
|
||||
blocks=layers[2],
|
||||
stride=2,
|
||||
groups=groups,
|
||||
reduction=reduction,
|
||||
downsample_kernel_size=downsample_kernel_size,
|
||||
downsample_padding=downsample_padding
|
||||
)
|
||||
self.layer4 = self._make_layer(
|
||||
block,
|
||||
planes=512,
|
||||
blocks=layers[3],
|
||||
stride=last_stride,
|
||||
groups=groups,
|
||||
reduction=reduction,
|
||||
downsample_kernel_size=downsample_kernel_size,
|
||||
downsample_padding=downsample_padding
|
||||
)
|
||||
self.avg_pool = nn.AvgPool2d(7, stride=1)
|
||||
self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
|
||||
|
||||
def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
|
||||
downsample_kernel_size=1, downsample_padding=0):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=downsample_kernel_size, stride=stride,
|
||||
padding=downsample_padding, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, groups, reduction, stride,
|
||||
downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, groups, reduction))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def load_param(self, model_path):
|
||||
param_dict = torch.load(model_path)
|
||||
for i in param_dict:
|
||||
if 'last_linear' in i:
|
||||
continue
|
||||
self.state_dict()[i].copy_(param_dict[i])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.layer0(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
return x
|
|
@ -7,7 +7,10 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .backbones.resnet import ResNet
|
||||
from .backbones.resnet import ResNet, BasicBlock, Bottleneck
|
||||
from .backbones.senet import SENet, SEResNetBottleneck, SEBottleneck, SEResNeXtBottleneck
|
||||
|
||||
|
||||
|
||||
|
||||
def weights_init_kaiming(m):
|
||||
|
@ -36,9 +39,93 @@ def weights_init_classifier(m):
|
|||
class Baseline(nn.Module):
|
||||
in_planes = 2048
|
||||
|
||||
def __init__(self, num_classes, last_stride, model_path, neck, neck_feat):
|
||||
def __init__(self, num_classes, last_stride, model_path, neck, neck_feat, model_name):
|
||||
super(Baseline, self).__init__()
|
||||
self.base = ResNet(last_stride)
|
||||
if model_name == 'resnet18':
|
||||
self.base = ResNet(last_stride=last_stride,
|
||||
block=BasicBlock,
|
||||
layers=[2, 2, 2, 2])
|
||||
elif model_name == 'resnet34':
|
||||
self.base = ResNet(last_stride=last_stride,
|
||||
block=BasicBlock,
|
||||
layers=[3, 4, 6, 3])
|
||||
elif model_name == 'resnet50':
|
||||
self.base = ResNet(last_stride=last_stride,
|
||||
block=Bottleneck,
|
||||
layers=[3, 4, 6, 3])
|
||||
elif model_name == 'resnet101':
|
||||
self.base = ResNet(last_stride=last_stride,
|
||||
block=Bottleneck,
|
||||
layers=[3, 4, 23, 3])
|
||||
elif model_name == 'resnet152':
|
||||
self.base = ResNet(last_stride=last_stride,
|
||||
block=Bottleneck,
|
||||
layers=[3, 8, 36, 3])
|
||||
|
||||
elif model_name == 'se_resnet50':
|
||||
self.base = SENet(block=SEResNetBottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
groups=1,
|
||||
reduction=16,
|
||||
dropout_p=None,
|
||||
inplanes=64,
|
||||
input_3x3=False,
|
||||
downsample_kernel_size=1,
|
||||
downsample_padding=0,
|
||||
last_stride=last_stride)
|
||||
elif model_name == 'se_resnet101':
|
||||
self.base = SENet(block=SEResNetBottleneck,
|
||||
layers=[3, 4, 23, 3],
|
||||
groups=1,
|
||||
reduction=16,
|
||||
dropout_p=None,
|
||||
inplanes=64,
|
||||
input_3x3=False,
|
||||
downsample_kernel_size=1,
|
||||
downsample_padding=0,
|
||||
last_stride=last_stride)
|
||||
elif model_name == 'se_resnet152':
|
||||
self.base = SENet(block=SEResNetBottleneck,
|
||||
layers=[3, 4, 36, 3],
|
||||
groups=1,
|
||||
reduction=16,
|
||||
dropout_p=None,
|
||||
inplanes=64,
|
||||
input_3x3=False,
|
||||
downsample_kernel_size=1,
|
||||
downsample_padding=0,
|
||||
last_stride=last_stride)
|
||||
elif model_name == 'se_resnext50':
|
||||
self.base = SENet(block=SEResNeXtBottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
groups=32,
|
||||
reduction=16,
|
||||
dropout_p=None,
|
||||
inplanes=64,
|
||||
input_3x3=False,
|
||||
downsample_kernel_size=1,
|
||||
downsample_padding=0,
|
||||
last_stride=last_stride)
|
||||
elif model_name == 'se_resnext101':
|
||||
self.base = SENet(blok=SEResNeXtBottleneck,
|
||||
layers=[3, 4, 23, 3],
|
||||
groups=32,
|
||||
reduction=16,
|
||||
dropout_p=None,
|
||||
inplanes=64,
|
||||
input_3x3=False,
|
||||
downsample_kernel_size=1,
|
||||
downsample_padding=0,
|
||||
last_stride=last_stride)
|
||||
elif model_name == 'senet154':
|
||||
self.base = SENet(block=SEBottleneck,
|
||||
layers=[3, 8, 36, 3],
|
||||
groups=64,
|
||||
reduction=16,
|
||||
dropout_p=0.2,
|
||||
last_stride=last_stride)
|
||||
|
||||
|
||||
self.base.load_param(model_path)
|
||||
self.gap = nn.AdaptiveAvgPool2d(1)
|
||||
# self.gap = nn.AdaptiveMaxPool2d(1)
|
||||
|
|
Loading…
Reference in New Issue